A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The active and passive kinematic difference between primary reverse and total shoulder prostheses. | LitMetric

The active and passive kinematic difference between primary reverse and total shoulder prostheses.

J Shoulder Elbow Surg

Department of Orthopaedic Surgery and Traumatology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands; Clinic "de Lairesse", Amsterdam, The Netherlands.

Published: September 2014

Background: Reverse shoulder arthroplasty (RSA) and total shoulder arthroplasty (TSA) effectively decrease pain and improve clinical outcome. However, indications and biomechanical properties vary greatly. Our aim was to analyze both active and passive shoulder motion (thoracohumeral [TH], glenohumeral [GH], and scapulothoracic [ST]) and determine the kinematic differences between RSAs and TSAs.

Methods: During 3 range-of-motion (ROM) tasks (forward flexion, abduction, and axial rotation), the motion patterns of 16 RSA patients (19 shoulders), with a mean age of 69 ± 8 years (range, 58-84 years), and 17 TSA patients (20 shoulders), with a mean age of 72 ± 10 years (range, 53-87 years), were measured. The mean length of follow-up was 22 ± 10 months (range, 6-41 months) for RSA patients and 33 ± 18 months (range, 12-87 months) for TSA patients. Kinematic measurements were performed with a 3-dimensional electromagnetic tracking device.

Results: All patients showed better passive than active ROM. This difference was significantly larger for RSA patients than for TSA patients (TH in sagittal plane, 20° vs 8° [P = .001]; GH in sagittal plane, 16° vs 7° [P = .003]; TH in scapular plane, 15° vs 2° [P < .001]; GH in scapular plane, 12° vs 0° [P < .001]; and ST in scapular plane, 3° vs -2° [P = .032]). This finding also showed that in the scapular plane, TSA patients showed hardly any difference between active and passive ROM. Furthermore, TSA patients had 16° to 17° larger active TH motion, 15° larger active GH motion, and 8° larger active ST motion compared with RSA patients. The GH-ST ratios showed similar figures for both types of prostheses.

Conclusion: TSA patients have larger active TH motion because in the scapular plane, they completely use the possible GH motion provided by the prosthetic design. This larger active ROM in TSA patients only applies for elevation and abduction, not for axial rotation or passive ROMs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jse.2014.01.040DOI Listing

Publication Analysis

Top Keywords

tsa patients
28
scapular plane
20
larger active
20
rsa patients
16
active motion
16
active passive
12
patients
12
active
9
total shoulder
8
shoulder arthroplasty
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!