Background: Recent studies link Toll-like receptor 3 (TLR3) to the pathogenesis of inflammatory bowel disease (IBD). Screening TLR3-agonist response in an intestinal epithelial cell line, we found complement factor B mRNA (CFB) potently upregulated and went on to further study localization of complement factor B synthesis and systemic activation of complement in ulcerative colitis and Crohn's disease.
Methods: In a transcriptome analysis of poly (I:C) stimulated HT-29 cells, we found CFB highly upregulated downstream of TLR3. We sought to confirm CFB upregulation in a microarray gene expression analysis on colonic biopsies from an IBD population (n = 133). Immunohistochemical staining and in situ hybridization were done to identify cellular sources of factor B and CFB. Systemic complement activation was assessed in plasma (n = 18) using neoepitope-based enzyme linked immunosorbent assay.
Results: CFB mRNA and protein were abundantly expressed in the colonic epithelial cell line, and synthesis enhanced by the poly (I:C) TLR3 ligand. In inflamed versus normal colonic mucosa of ulcerative colitis and Crohn's disease, CFB mRNA was the most significantly overexpressed gene and the mRNA abundance ratio was among the 50 highest. Epithelial cells were the dominating site of factor B expression. Systemic complement activation was significantly higher in active than in nonactive IBD.
Conclusions: This study is the first to link TLR3 to activation of the alternative complement pathway. Complement factor B is potently upregulated locally in IBD in addition to having a possible central role in systemic complement activation. This suggests a prominent role for complement in IBD pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MIB.0000000000000035 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.
View Article and Find Full Text PDFAm J Ther
January 2025
Northwell, New Hyde Park, NY, Department of Medicine, Manhasset, NY.
Background: C3 glomerulopathy (C3G) is a rare disease affecting the complement alternative pathway, categorized into dense deposit disease and C3 glomerulonephritis. Dense deposit disease predominantly affects younger individuals, while C3 glomerulonephritis tends to manifest in older populations. The diseases are characterized by dysregulation of the complement alternative pathway, leading to the deposition of complement components in the glomeruli and subsequent renal dysfunction.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
Background: This research explores complement activation products involvement and risk and protective polymorphisms in the complement alternative pathway genes in Shiga toxin-associated hemolytic uremic syndrome (STEC-HUS) pathogenesis.
Methods: We analyzed the levels of complement activation products, C3a, C5a and soluble C5b-9 (sC5b-9) and plasma concentrations of Factor H (FH) and FH-related protein 1 (FHR-1) in 44 patients with STEC-HUS, 12 children with STEC-positive diarrhea (STEC-D), and 72 healthy controls (HC). STEC-HUS cases were classified as "severe" or "non-severe".
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!