ANTXR2 is a potential causative gene in the genome-wide association study of the blood pressure locus 4q21.

Hypertens Res

1] Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea [2] Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea [3] Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, Korea.

Published: September 2014

Hypertension is the most prevalent cardiovascular disease worldwide, but its genetic basis is poorly understood. Recently, genome-wide association studies identified 33 genetic loci that are associated with blood pressure. However, it has been difficult to determine whether these loci are causative owing to the lack of functional analyses. Of these 33 genome-wide association studies (GWAS) loci, the 4q21 locus, known as the fibroblast growth factor 5 (FGF5) locus, has been linked to blood pressure in Asians and Europeans. Using a mouse model, we aimed to identify a causative gene in the 4q21 locus, in which four genes (anthrax toxin receptor 2 (ANTXR2), PR domain-containing 8 (PRDM8), FGF5 and chromosome 4 open reading frame 22 (C4orf22)) were near the lead single-nucleotide polymorphism (rs16998073). Initially, we examined Fgf5 gene by measuring blood pressure in Fgf5-knockout mice. However, blood pressure did not differ between Fgf5 knockout and wild-type mice. Therefore, the other candidate genes were studied by in vivo small interfering RNA (siRNA) silencing in mice. Antxr2 siRNA was pretreated with polyethylenimine and injected into mouse tail veins, causing a significant decrease in Antxr2 mRNA by 22% in the heart. Moreover, blood pressure measured under anesthesia in Antxr2 siRNA-injected mice rose significantly compared with that of the controls. These results suggest that ANTXR2 is a causative gene in the human 4q21 GWAS-blood pressure locus. Additional functional studies of ANTXR2 in blood pressure may identify a novel genetic pathway, thus increasing our understanding of the etiology of essential hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1038/hr.2014.84DOI Listing

Publication Analysis

Top Keywords

blood pressure
28
causative gene
12
genome-wide association
12
pressure
8
pressure locus
8
association studies
8
4q21 locus
8
antxr2
7
blood
7
locus
5

Similar Publications

Introduction: Hypertension is among the most significant non-communicable public health issues worldwide. High blood pressure, or hypertension, has been associated with severe health consequences, including death, aneurysms, stroke, chronic renal disease, eye damage, heart attack, heart failure, peripheral artery disease, and vascular dementia. Consequently, this study aimed to investigate the predictors linked to survival time and the progression of blood pressure measurements in hypertensive patients.

View Article and Find Full Text PDF

Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.

View Article and Find Full Text PDF

The current research introduces a model-free ultra-local model (MFULM) controller that utilizes the multi-agent on-policy reinforcement learning (MAOPRL) technique for remotely regulating blood pressure through precise drug dosing in a closed-loop system. Within the closed-loop system, there exists a MFULM controller, an observer, and an intelligent MAOPRL algorithm. Initially, a flexible MFULM controller is created to make adjustments to blood pressure and medication dosages.

View Article and Find Full Text PDF

Purpose Of Review: The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets.

Recent Findings: Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains.

View Article and Find Full Text PDF

Olfactory receptors (ORs), taste receptors and opsins are well-known for their pivotal roles in mediating the senses of smell, taste and sight, respectively. However, in the past two decades, research has shown that these sensory receptors also regulate physiological processes in a variety of non-sensory tissues. Although ORs, taste receptors and opsins have all been shown to have physiological roles beyond their traditional locations, most work in the kidney has focused on ORs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!