The intervals between screens for the early detection of diseases such as breast and colon cancer suggested by screening guidelines are typically based on the average population risk of disease. With the emergence of ever more biomarkers for cancer risk prediction and the development of personalized medicine, there is a need for risk-specific screening intervals. The interval between successive screens should be shorter with increasing cancer risk. A risk-dependent optimal interval is ideally derived from a cost-effectiveness analysis using a validated simulation model. However, this is time-consuming and costly. We propose a simplified mathematical approach for the exploratory analysis of the implications of risk level on optimal screening interval. We develop a mathematical model of the optimal screening interval for breast cancer screening. We verified the results by programming the simplified model in the MISCAN-Breast microsimulation model and comparing the results. We validated the results by comparing them with the results of a full, published MISCAN-Breast cost-effectiveness model for a number of different risk levels. The results of both the verification and validation were satisfactory. We conclude that the mathematical approach can indicate the impact of disease risk on the optimal screening interval.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0272989X14528380DOI Listing

Publication Analysis

Top Keywords

mathematical approach
12
optimal screening
12
screening interval
12
disease risk
8
risk optimal
8
screens early
8
early detection
8
cancer risk
8
risk
7
interval
6

Similar Publications

A phylogenetic approach to delimitate species in a probabilistic way.

Syst Biol

January 2025

Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra ACT 0200 Australia.

Different species concepts and their associated criteria have been used to delimit species boundaries, such as the absence of gene flow for the biological species concept and the presence of morphological distinction for the morphological species concept. The need for different delimitation criteria largely reflects the fact that species are generated under various speciation mechanisms. A key question is how to make species delimitation consistent in a species group, especially when we want to delimit the species boundaries over many newly discovered evolutionary lineages and add these new lineages into a comparative analysis.

View Article and Find Full Text PDF

Biomarkers and Social Determinants in atherosclerotic Arterial Diseases: A Scoping Review.

Ann Vasc Surg

January 2025

Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100, Catanzaro, Italy; Interuniversity Center of Phlebolymphology (CIFL), "Magna Graecia" University, 88100 Catanzaro, Italy. Electronic address:

Background: Arterial diseases like coronary artery disease, carotid stenosis, peripheral artery disease, and abdominal aortic aneurysm have high morbidity and mortality, making them key research areas. Their multifactorial nature complicates patient treatment and prevention. Biomarkers offer insights into the biochemical and molecular processes, while social factors also significantly impact patients' health and quality of life.

View Article and Find Full Text PDF

Clinical risk prediction models are ubiquitous in many surgical domains. The traditional approach to develop these models involves the use of regression analysis. Machine learning algorithms are gaining in popularity as an alternative approach for prediction and classification problems.

View Article and Find Full Text PDF

Microneedle(MN)-based drug delivery is one of the potential approaches to overcome the limitations of oral and hypodermic needle delivery. An in silico model has been developed for hollow microneedle (HMN)-based drug delivery in the skin and its subsequent absorption in the blood and tissue compartments in the presence of interstitial flow. The drug's reversible specific saturable binding to its receptors and the kinetics of reversible absorption across the blood and tissue compartments have been taken into account.

View Article and Find Full Text PDF

The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative U.

Polymers (Basel)

January 2025

Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain.

Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!