Background: Alternative splicing (AS) significantly enhances transcriptome complexity. It is differentially regulated in a wide variety of cell types and plays a role in several cellular processes. Here we describe a detailed survey of alternative splicing in grape based on 124 SOLiD RNAseq analyses from different tissues, stress conditions and genotypes.

Results: We used the RNAseq data to update the existing grape gene prediction with 2,258 new coding genes and 3,336 putative long non-coding RNAs. Several gene structures have been improved and alternative splicing was described for about 30% of the genes. A link between AS and miRNAs was shown in 139 genes where we found that AS affects the miRNA target site. A quantitative analysis of the isoforms indicated that most of the spliced genes have one major isoform and tend to simultaneously co-express a low number of isoforms, typically two, with intron retention being the most frequent alternative splicing event.

Conclusions: As described in Arabidopsis, also grape displays a marked AS tissue-specificity, while stress conditions produce splicing changes to a minor extent. Surprisingly, some distinctive splicing features were also observed between genotypes. This was further supported by the observation that the panel of Serine/Arginine-rich splicing factors show a few, but very marked differences between genotypes. The finding that a part the splicing machinery can change in closely related organisms can lead to some interesting hypotheses for evolutionary adaptation, that could be particularly relevant in the response to sudden and strong selective pressures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108029PMC
http://dx.doi.org/10.1186/1471-2229-14-99DOI Listing

Publication Analysis

Top Keywords

alternative splicing
20
splicing
10
survey alternative
8
splicing grape
8
splicing machinery
8
stress conditions
8
alternative
5
deep survey
4
grape
4
grape reveals
4

Similar Publications

Characterization of Tumor Antigens from Multi-omics Data: Computational Approaches and Resources.

Genomics Proteomics Bioinformatics

January 2025

Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.

Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.

View Article and Find Full Text PDF

Aim: The objective of this study was to examine the transcriptomic profile changes in hyperuricemia (HUA) and to investigate the pathogenic mechanisms and biomarkers of HUA from a transcriptomic perspective.

Methods: In this study, three patients with HUA were randomly selected and matched with three healthy controls. Six participants provided peripheral blood mononuclear cells (PBMCs) for analysis.

View Article and Find Full Text PDF

Mechanistic insights into HNRNPA2B1: A comprehensive pan-cancer analysis and functional characterization in lung cancer.

Biochim Biophys Acta Mol Basis Dis

January 2025

The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China. Electronic address:

Heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), a member of the A/B subfamily of hnRNPs, plays a critical role in tumorigenesis, yet its expression patterns, molecular mechanisms, and prognostic significance remain inadequately characterized. In this study, we performed a comprehensive pan-cancer analysis utilizing multiple public databases, revealing that HNRNPA2B1 is consistently overexpressed in most tumor types and correlates with poor prognosis across several malignancies. Pathway enrichment analysis highlighted its involvement in RNA alternative splicing, transport, and stability, processes that contribute to tumor progression.

View Article and Find Full Text PDF

Interferon (IFN)-α is the earliest cytokine signature observed in individuals at risk for type 1 diabetes (T1D), but the effect of IFN-α on the antigen repertoire of HLA Class I (HLA-I) in pancreatic β-cells is unknown. Here we characterize the HLA-I antigen presentation in resting and IFN-α-exposed β-cells and find that IFN-α increases HLA-I expression and expands peptide repertoire to those derived from alternative mRNA splicing, protein cis-splicing and post-translational modifications. While the resting β-cell immunopeptidome is dominated by HLA-A-restricted peptides, IFN-α largely favors HLA-B and only marginally upregulates HLA-A, translating into increased HLA-B-restricted peptide presentation and activation of HLA-B-restricted CD8 T cells.

View Article and Find Full Text PDF

Effects of acute PM purification on cognitive function and underlying mechanisms: Evidence from integrating alternative splicing into multi-omics.

J Hazard Mater

January 2025

Vanke School of Public Health, Tsinghua University, Beijing 100084, China; Institute for Healthy China, Tsinghua University, Beijing 100084, China. Electronic address:

The relationship between fine particulate matter (PM) and cognition has been extensively investigated. However, the causal impact of acute PM purification on cognition improvement and the underlying biological mechanisms remain relatively opaque. Our double-blinded randomized controlled trial assessed the impact of acute PM purification on executive function, underpinned by multi-omics approaches including alternative splicing (AS) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!