Present on archaeal and eukaryotic translation elongation factor 2, diphthamide represents one of the most intriguing post-translational modifications on proteins. The biosynthesis of diphthamide was proposed to occur in three steps requiring seven proteins, Dph1-7, in eukaryotes. The functional assignments of Dph1-5 in the first and second step have been well established. Recent studies suggest that Dph6 (yeast YLR143W or human ATPBD4) and Dph7 (yeast YBR246W or human WDR85) are involved in the last amidation step, with Dph6 being the actual diphthamide synthetase catalyzing the ATP-dependent amidation reaction. However, the exact molecular role of Dph7 is unclear. Here we demonstrate that Dph7 is an enzyme catalyzing a previously unknown step in the diphthamide biosynthesis pathway. This step is between the Dph5- and Dph6-catalyzed reactions. We demonstrate that the Dph5-catalyzed reaction generates methylated diphthine, a previously overlooked intermediate, and Dph7 is a methylesterase that hydrolyzes methylated diphthine to produce diphthine and allows the Dph6-catalyzed amidation reaction to occur. Thus, our study characterizes the molecular function of Dph7 for the first time and provides a revised diphthamide biosynthesis pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015618 | PMC |
http://dx.doi.org/10.1021/ja5009272 | DOI Listing |
ACS Omega
September 2024
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India.
J-domain proteins (JDPs) are obligate cochaperones of Hsp70s with a wide range of functions in protein homeostasis. Although the J-domain is required for the stimulation of Hsp70s ATPase activity, the functional specificity of JDPs is governed by domains or regions other than the J-domain. Jjj3/Dph4, a class III JDP, is required for diphthamide (DPH) biosynthesis in eukaryotes, including yeast and mammals.
View Article and Find Full Text PDFBiomolecules
April 2024
Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, 34132 Kassel, Germany.
The Dph1•Dph2 heterodimer from yeast is a radical SAM (RS) enzyme that generates the 3-amino-3-carboxy-propyl (ACP) precursor for diphthamide, a clinically relevant modification on eukaryotic elongation factor 2 (eEF2). ACP formation requires SAM cleavage and atypical Cys-bound Fe-S clusters in each Dph1 and Dph2 subunit. Intriguingly, the first Cys residue in each motif is found next to another ill-defined cysteine that we show is conserved across eukaryotes.
View Article and Find Full Text PDFNat Commun
April 2024
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
Diphthamide is a modified histidine residue unique for eukaryotic translation elongation factor 2 (eEF2), a key ribosomal protein. Loss of this evolutionarily conserved modification causes developmental defects through unknown mechanisms. In a patient with compound heterozygous mutations in Diphthamide Biosynthesis 1 (DPH1) and impaired eEF2 diphthamide modification, we observe multiple defects in neural crest (NC)-derived tissues.
View Article and Find Full Text PDFTrends Mol Med
February 2024
Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany. Electronic address:
Diphthamide, a complex modification on eukaryotic translation elongation factor 2 (eEF2), assures reading-frame fidelity during translation. Diphthamide and enzymes for its synthesis are conserved in eukaryotes and archaea. Originally identified as target for diphtheria toxin (DT) in humans, its clinical relevance now proves to be broader than the link to pathogenic bacteria.
View Article and Find Full Text PDFCancer Lett
February 2024
Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China. Electronic address:
Oxaliplatin is an important initial chemotherapy benefiting advanced-stage colorectal cancer patients. Frustratingly, acquired oxaliplatin resistance always occurs after sequential chemotherapy with diverse antineoplastic drugs. Therefore, an exploration of the mechanism of oxaliplatin resistance formation in-depth is urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!