Critical role of TNF-α in cerebral aneurysm formation and progression to rupture.

J Neuroinflammation

Joseph and Marie Field Cerebrovascular Research Laboratory, Division of Neurovascular and Endovascular Surgery, Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA.

Published: April 2014

Background: Alterations in TNF-α expression have been associated with cerebral aneurysms, but a direct role in formation, progression, and rupture has not been established.

Methods: Cerebral aneurysms were induced through hypertension and a single stereotactic injection of elastase into the basal cistern in mice. To test the role of TNF-α in aneurysm formation, aneurysms were induced in TNF-α knockout mice and mice pretreated with the synthesized TNF-α inhibitor 3,6'dithiothalidomide (DTH). To assess the role of TNF-α in aneurysm progression and rupture, DTH was started 6 days after aneurysm induction. TNF-α expression was assessed through real-time PCR and immunofluorescence staining.

Results: TNF-α knockout mice and those pre-treated with DTH had significantly decreased incidence of aneurysm formation and rupture as compared to sham mice. As compared with sham mice, TNF-α protein and mRNA expression was not significantly different in TNF-α knockout mice or those pre-treated with DTH, but was elevated in unruptured and furthermore in ruptured aneurysms. Subarachnoid hemorrhage (SAH) occurred between 7 and 21 days following aneurysm induction. To ensure aneurysm formation preceded rupture, additional mice underwent induction and sacrifice after 7 days. Seventy-five percent had aneurysm formation without evidence of SAH. Initiation of DTH treatment 6 days after aneurysm induction did not alter the incidence of aneurysm formation, but resulted in aneurysmal stabilization and a significant decrease in rupture.

Conclusions: These data suggest a critical role of TNF-α in the formation and rupture of aneurysms in a model of cerebral aneurysm formation. Inhibitors of TNF-α could be beneficial in preventing aneurysmal progression and rupture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022343PMC
http://dx.doi.org/10.1186/1742-2094-11-77DOI Listing

Publication Analysis

Top Keywords

aneurysm formation
28
role tnf-α
16
progression rupture
16
tnf-α
12
tnf-α knockout
12
knockout mice
12
days aneurysm
12
aneurysm induction
12
aneurysm
11
formation
9

Similar Publications

Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.

View Article and Find Full Text PDF

Background And Purpose: This animal study was designed to evaluate in vivo the acute and short-term safety and efficacy of the new Artisse intrasaccular device (ISD) for aneurysm occlusion and to gain knowledge about the behavior in the aneurysms.

Materials And Methods: The device was implanted in 7 white New Zealand rabbits with bifurcation aneurysms. Immediate and 90-day angiographic follow-up as well as histologic and scanning electron microscope imaging were evaluated.

View Article and Find Full Text PDF

tRF-AspGTC Promotes Intracranial Aneurysm Formation by Controlling TRIM29-Mediated Galectin-3 Ubiquitination.

Research (Wash D C)

January 2025

Department of Neurosurgery and Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.

Transfer RNA-derived small RNAs, a recently identified class of small noncoding RNAs, play a crucial role in regulating gene expression and are implicated in cerebrovascular diseases. However, the specific biological roles and mechanisms of transfer RNA-derived small RNAs in intracranial aneurysms (IAs) remain unclear. In this study, we identified that the transfer RNA-Asp-GTC derived fragment (tRF-AspGTC) is highly expressed in the IA tissues of both humans and mice.

View Article and Find Full Text PDF

The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms.

View Article and Find Full Text PDF

The Complex Role of Matrix Metalloproteinase-2 (MMP-2) in Health and Disease.

Int J Mol Sci

December 2024

Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.

Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!