The decrease of thermal conductivity is crucial for the development of efficient thermal energy converters. Systems composed of a periodic set of very thin layers show among the smallest thermal conductivities reported to-date. Here, we fabricate in an unconventional but straightforward way hybrid superlattices consisting of a large number of nanomembranes mechanically stacked on top of each other. The superlattices can consist of an arbitrary composition of n- or p-type doped single-crystalline semiconductors and a polycrystalline metal layer. These hybrid multilayered systems are fabricated by taking advantage of the self-rolling technique. First, differentially strained nanomembranes are rolled into three-dimensional microtubes with multiple windings. By applying vertical pressure, the tubes are then compressed and converted into a planar hybrid superlattice. The thermal measurements show a substantial reduction of the cross-sectional heat transport through the nanomembrane superlattice compared to a single nanomembrane layer. Time-domain thermoreflectance measurements yield thermal conductivity values below 2 W m(-1) K(-1). Compared to bulk values, this represents a reduction of 2 orders of magnitude by the incorporation of the mechanically joined interfaces. The scanning thermal atomic force microscopy measurements support the observation of reduced thermal transport on top of the superlattices. In addition, small defects with a spatial resolution of ∼100 nm can be resolved in the thermal maps. The low thermal conductivity reveals the potential of this approach to fabricate miniaturized on-chip solutions for energy harvesters in, e.g., microautonomous systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl404827jDOI Listing

Publication Analysis

Top Keywords

thermal conductivity
16
thermal
10
mechanically joined
8
top superlattices
8
conductivity mechanically
4
joined semiconducting/metal
4
semiconducting/metal nanomembrane
4
superlattices
4
nanomembrane superlattices
4
superlattices decrease
4

Similar Publications

Effects of GaN substrates of different polarity on the thermal and electronic properties of monolayer MoS.

Phys Chem Chem Phys

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China.

Monolayer MoS, a compound in two-dimensional TMDs, exhibits excellent physical and chemical properties due to its sandwich structure, making it widely used in the design of nanodevices. We investigated the impact of GaN substrates on the thermal and electronic properties of monolayer MoS. The results reveal that the polarity of the GaN substrate significantly affects the thermal conductivity of monolayer MoS.

View Article and Find Full Text PDF

This paper presents a multiscale computational model, 'micro-to-meso-to-macro', to simulate polydopamine coated gold nanoparticles (AuNP@PDA) for assisted tumor photothermal therapy (PTT). The optical properties, mainly refractive index, of the PDA unit molecules are calculated using the density functional theory (DFT) method in this multiscale model. Subsequently, the thermodynamic properties, including thermal conductivity and heat capacity, of the PDA cells and AuNP@PDA particles are calculated using molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

Black aluminum is a material characterized by high surface porosity due to columnar growth and exhibits unique optical properties that make it attractive for applications such as light trapping, infrared detection, and passive thermal radiation cooling. In this study, we correlate the structural and optical properties of black aluminum by comparing it with conventional reflective aluminum layers. These layers of varying thicknesses were deposited on fused silica substrates, and their optical properties were analyzed.

View Article and Find Full Text PDF

In this study, we demonstrate that a highly efficient colorimetric sensor prepared from carbon-shielded Co-Ce Prussian blue analog (PBA) nanopetals (CoO/CeO@C) by green chemical deposition method and thermal annealing processes for detection of ascorbic acid (AA) in cerebral microdialysis fluids. The synthesized CoO/CeO@C showed high dual-mimetic activity, i.e.

View Article and Find Full Text PDF

The poly(vinylidene fluoride) (PVDF) has been deemed as an appealing matrix for solid polymer electrolytes due to its wide electrochemical window and excellent thermal stability. Further incorporation with garnet filler endows PVDF-based electrolyte with increased ionic conductivity and mechanical strength. However, the spontaneous formation of alkaline layer containing LiOH/LiCO on garnet surface cannot be neglected, concerning its low ionic conductivity combined with the destructive effect on electrochemical performance of PVDF-based composite electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!