Nature's toolkit for microbial rhodopsin ion pumps.

Proc Natl Acad Sci U S A

Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Published: May 2014

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020099PMC
http://dx.doi.org/10.1073/pnas.1405093111DOI Listing

Publication Analysis

Top Keywords

nature's toolkit
4
toolkit microbial
4
microbial rhodopsin
4
rhodopsin ion
4
ion pumps
4
nature's
1
microbial
1
rhodopsin
1
ion
1
pumps
1

Similar Publications

Closing the air gap: the use of drones for studying wildlife ecophysiology.

Biol Rev Camb Philos Soc

January 2025

School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia.

Techniques for non-invasive sampling of ecophysiological data in wild animals have been developed in response to challenges associated with studying captive animals or using invasive methods. Of these, drones, also known as Unoccupied Aerial Vehicles (UAVs), and their associated sensors, have emerged as a promising tool in the ecophysiology toolkit. In this review, we synthesise research in a scoping review on the use of drones for studying wildlife ecophysiology using the PRISMA-SCr checklist and identify where efforts have been focused and where knowledge gaps remain.

View Article and Find Full Text PDF

S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology.

Q Rev Biophys

January 2025

Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria.

Prokaryotic microorganisms, comprising and , exhibit a fascinating diversity of cell envelope structures reflecting their adaptations that contribute to their resilience and survival in diverse environments. Among these adaptations, surface layers (S-layers) composed of monomolecular protein or glycoprotein lattices are one of the most observed envelope components. They are the most abundant cellular proteins and represent the simplest biological membranes that have developed during evolution.

View Article and Find Full Text PDF

Background: Aspergillus niger is an important industrial filamentous fungus used to produce organic acids and enzymes. A wide dynamic range of promoters, particularly strong promoters, are required for fine-tuning the regulation of gene expression to balance metabolic flux and achieve the high yields of desired products. However, the limited understanding of promoter architectures and activities restricts the efficient transcription regulation of targets in strain engineering in A.

View Article and Find Full Text PDF

Purpose: In locations where the proton energy spectrum is broad, lineal energy spectrum-based proton biological effects models may be more accurate than dose-averaged linear energy transfer (LET) based models. However, the development of microdosimetric spectrum-based biological effects models is hampered by the extreme computational difficulty of calculating microdosimetric spectra. Given a precomputed library of lineal energy spectra for monoenergetic protons, a weighted summation can be performed which yields the lineal energy spectrum of an arbitrary polyenergetic beam.

View Article and Find Full Text PDF

Promoted expression of a lipase for its application in EPA/DHA enrichment and mechanistic insights into its substrate specificity.

Int J Biol Macromol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:

Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200% in the secretion level and the volumetric activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!