Homoeologous Chromosome Sorting and Progression of Meiotic Recombination in Brassica napus: Ploidy Does Matter!

Plant Cell

INRA, UMR1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, F-78000 Versailles, France

Published: April 2014

Meiotic recombination is the fundamental process that produces balanced gametes and generates diversity within species. For successful meiosis, crossovers must form between homologous chromosomes. This condition is more difficult to fulfill in allopolyploid species, which have more than two sets of related chromosomes (homoeologs). Here, we investigated the formation, progression, and completion of several key hallmarks of meiosis in Brassica napus (AACC), a young polyphyletic allotetraploid crop species with closely related homoeologous chromosomes. Altogether, our results demonstrate a precocious and efficient sorting of homologous versus homoeologous chromosomes during early prophase I in two representative B. napus accessions that otherwise show a genotypic difference in the progression of homologous recombination. More strikingly, our detailed comparison of meiosis in near isogenic allohaploid and euploid plants showed that the mechanism(s) promoting efficient chromosome sorting in euploids is adjusted to promote crossover formation between homoeologs in allohaploids. This suggests that, in contrast to other polyploid species, chromosome sorting is context dependent in B. napus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036564PMC
http://dx.doi.org/10.1105/tpc.114.122788DOI Listing

Publication Analysis

Top Keywords

chromosome sorting
12
meiotic recombination
8
brassica napus
8
homoeologous chromosomes
8
homoeologous chromosome
4
sorting
4
sorting progression
4
progression meiotic
4
recombination brassica
4
napus
4

Similar Publications

Conservation of threatened species can benefit from an evaluation of genes in the Major Histocompatibility Complex (MHC), whose loci encode proteins that bind pathogens and are often under strong selection to maintain diversity in immune response to diseases. Despite this gene family's importance to disease resistance, little is known about these genes in reptiles including snakes. To address this issue, we assembled and annotated a highly-contiguous genome assembly for the timber rattlesnake (Crotalus horridus), a pit viper which is threatened or endangered in parts of its range, and analyzed this new genome along with three other rattlesnake genomes to characterize snake MHC loci.

View Article and Find Full Text PDF

Single chromatin fiber profiling and nucleosome position mapping in the human brain.

Cell Rep Methods

December 2024

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address:

We apply a single-molecule chromatin fiber sequencing (Fiber-seq) protocol designed for amplification-free cell-type-specific mapping of the regulatory architecture at nucleosome resolution along extended ∼10-kb chromatin fibers to neuronal and non-neuronal nuclei sorted from human brain tissue. Specifically, application of this method enables the resolution of cell-selective promoter and enhancer architectures on single fibers, including transcription factor footprinting and position mapping, with sequence-specific fixation of nucleosome arrays flanking transcription start sites and regulatory motifs. We uncover haplotype-specific chromatin patterns, multiple regulatory elements cis-aligned on individual fibers, and accessible chromatin at 20,000 unique sites encompassing retrotransposons and other repeat sequences hitherto "unmappable" by short-read epigenomic sequencing.

View Article and Find Full Text PDF

Hybrid incompatibilities are a critical component of species barriers and may arise due to negative interactions between divergent regulatory elements in parental species. We used a comparative approach to identify common themes in the regulatory phenotypes associated with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We investigated three potential characteristic gene expression phenotypes in hybrids including the propensity of transgressive differentially expressed genes towards over or underexpression, the influence of developmental stage on patterns of misexpression, and the role of the sex chromosomes on misexpression phenotypes.

View Article and Find Full Text PDF

Establishing a dominant early larval sex-selection strain in the Asian malaria vector Anopheles stephensi.

Infect Dis Poverty

November 2024

School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093, USA.

Background: Genetic biocontrol interventions targeting mosquito-borne diseases require the release of male mosquitoes exclusively, as only females consume blood and transmit pathogens. Releasing only males eliminates the risk of increasing mosquito bites and spreading pathogens while enabling effective population control. The aim of this study is to develop robust sex-sorting methods for early larval stages in mosquitoes, enabling scalable male-only releases for genetic biocontrol interventions.

View Article and Find Full Text PDF

Genome-wide analysis and expression profile of the bZIP gene family in .

Front Plant Sci

October 2024

Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China.

The basic leucine zipper (bZIP) family consists of conserved transcription factors which are widely present in eukaryotes and play important regulatory roles in plant growth, development, and stress responses. is a red marine macroalga of significant economic importance; however, their bZIP family members and functions have not been systematically identified and analyzed. In the present study, the gene family in was characterized by investigating gene structures, conserved motifs, phylogenetic relationships, chromosomal localizations, gene duplication events, cis-regulatory elements, and expression profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!