Cartilage tissue engineering using PHBV and PHBV/Bioglass scaffolds.

Mol Med Rep

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.

Published: July 2014

AI Article Synopsis

Article Abstract

Scaffolds have an important role in cartilage tissue engineering. Poly(hydroxybutyrate‑co‑hydroxyvalerate) (PHBV) has been demonstrated to have potential as a scaffold for the three dimensional construction of engineered cartilage tissue. However, the poor hydrophilicity and mechanical strength associated with PHBV affects its clinical applications as a scaffold in cartilage tissue engineering. The incorporation of Bioglass (BG) into PHBV has been shown to improve the hydrophilicity and mechanical strength of PHBV matrices. Therefore, this study aimed to compare the properties of PHBV scaffolds and PHBV scaffolds containing 10% BG (w/w) (PHBV/10% BG) and to investigate the effects of these scaffolds on the properties of engineered cartilage in vivo. Rabbit auricular chondrocytes were seeded onto PHBV and PHBV/10% BG scaffolds. Differences in cartilage regeneration were compared between the neocartilage grown on the PHBV and the PHBV/10% BG scaffolds after 10 weeks of in vivo transplantation. The incorporation of BG into PHBV was observed to improve the hydrophilicity and compressive strength of the scaffold. Furthermore, after 10 weeks incubation in vivo, the cartilage‑like tissue formed using the PHBV/10% BG scaffolds was observed to be thicker, exhibit enhanced biomechanical properties and have a higher cartilage matrix content than that generated using the pure PHBV scaffolds. The results of this study demonstrate that the incorporation of BG into PHBV may generate composite scaffolds with improved properties for cartilage engineering.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2014.2145DOI Listing

Publication Analysis

Top Keywords

cartilage tissue
16
tissue engineering
12
phbv
12
phbv scaffolds
12
phbv/10% bg scaffolds
12
scaffolds
10
cartilage
8
engineered cartilage
8
hydrophilicity mechanical
8
mechanical strength
8

Similar Publications

Achondroplasia, the most prevalent short-stature disorder, is caused by missense variants overactivating the fibroblast growth factor receptor 3 (FGFR3). As current surgical and pharmaceutical treatments only partially improve some disease features, we sought to explore a genetic approach. We show that an enhancer located 29 kb upstream of mouse Fgfr3 (-29E) is sufficient to confer a transgenic mouse reporter with a domain of expression in cartilage matching that of Fgfr3.

View Article and Find Full Text PDF

Medusa's gaze: Cell traces and fibrils but no collagen in permineralized Jurassic ichthyosaur bone.

iScience

January 2025

Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany.

Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers.

View Article and Find Full Text PDF

Fetal Cartilage Progenitor Cells in the Repair of Osteochondral Defects.

JB JS Open Access

January 2025

Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky.

Background: Therapies for cartilage restoration are of great interest, but current options provide limited results. In salamanders, interzone (IZN) tissue can regenerate large joint lesions. The mammalian homolog to this tissue exists during fetal development and exhibits remarkable chondrogenesis in vitro.

View Article and Find Full Text PDF

Rhinoplasty Septal Cartilage Harvest and Reconstruction: The 4 Clicks.

Plast Reconstr Surg Glob Open

January 2025

From the Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX.

Successful rhinoplasty relies on a deep understanding of nasal anatomy and precise nasal tip control for lasting functional and aesthetic outcomes. Structural grafts, like septal extension grafts, are instrumental in maintaining tip position and projection with minimal long-term changes. This article details a systematic technique to harvest septal cartilage that maximizes graft material and allows for effective septal deviation correction.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is the most common form of chronic joint disease, affecting mainly the elderly population. This disorder is caused by cartilage degeneration with complex changes in the chondrocyte phenotype. Inorganic pyrophosphate (PPi) was shown to counteract the detrimental effect of interleukin (IL)-1β challenging in an in vitro OA model based on rat articular chondrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!