Biomass and lipid productivities of Isochrysis galbana were optimized using nutrients of molasses (4, 8, 12 g l(-1)), glucose (4, 8, 12 g l(-1)), glycerol (4, 8, 12 g l(-1)) and yeast extract (2 g l(-1)). Combinations of carbon sources at different ratios were evaluated in which the alga was grown at three different light intensities (50, 100 and 150 μmol m(-2) s(-1)) under the influence of three different photoperiod cycles (12/12, 18/6 and 24/0 h light/dark). A maximum cell density of 8.35 g l(-1) with 32 % (w/w) lipid was achieved for mixotrophic growth at 100 μmol m(-2) s(-1) and 18/6 h light/dark with molasses/glucose (20:80 w/w). Mixotrophic cultivation using molasses, glucose and glycerol was thus effective for the cultivation of I. galbana.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-014-1517-2DOI Listing

Publication Analysis

Top Keywords

carbon sources
8
biomass lipid
8
lipid productivities
8
productivities isochrysis
8
isochrysis galbana
8
μmol m-2
8
m-2 s-1
8
l-1
5
photoperiod light
4
light intensity
4

Similar Publications

A review of biogas upgrading technologies: key emphasis on electrochemical systems.

Water Sci Technol

January 2025

Engineering & Energy, College of Science Health Engineering and Education, Murdoch University, 6150 Perth, Australia E-mail:

Biogas, consisting mainly of CO and CH, offers a sustainable source of energy. However, this gaseous stream has been undervalued in wastewater treatment plants owing to its high CO content. Biogas upgrading by capturing CO broadens its utilisation as a substitute for natural gas.

View Article and Find Full Text PDF

Unlabelled: Mutations affecting flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving , , and , which creates a feedback system to regulate flagella production. Through genomic analysis of clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene and regulatory gene .

View Article and Find Full Text PDF

Off-axis integrated cavity output spectroscopy (OA-ICOS) allows the laser to be reflected multiple times inside the cavity, increasing the effective absorption path length and thus improving sensitivity. However, OA-ICOS systems are affected by various types of noise, and traditional filtering methods offer low processing efficiency and perform limited feature extraction. Deep learning models enable us to extract important features from large-scale, complex spectral data and analyze them efficiently and accurately.

View Article and Find Full Text PDF

Ultrafast Photoflash Synthesis of High-Entropy Oxide Nanoparticles.

ACS Nano

January 2025

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.

High-entropy metal oxides (HEOs) have recently received growing attention for broad energy conversion and storage applications due to their tunable properties. HEOs typically involve the combination of multiple metal cations in a single oxide lattice, thus bringing distinctive structures, controllable elemental composition, and tunable functional properties. Many synthesis methods for HEOs have been reported, such as solid-state reactions and carbon thermal shock methods.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) are bioplastics produced by few bacteria as intracellular lipid inclusions under excess carbon source and nutrient-deprived conditions. These polymers are biodegradable and resemble petroleum-based plastics. The rising environmental concerns have increased the demand for PHA, but the low yield in wild-type bacterial strains limits large-scale production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!