Although cisplatin is considered as an effective anti-cancer agent, it has shown limitations and may produce toxicity in patients. Therefore, we synthesized two cis-dichlorideplatinum(II) compounds (13 and 14) composed of meta- and para-N,N-diphenyl pyridineamine ligands through a reaction of the amine precursors and PtCl2 with respective yields of 16 and 47 %. We hypothesized that compounds 13 and 14, with lipophilic ligands, should transport efficiently in cancer cells and demonstrate more effectiveness than cisplatin. When tested for biological activity, compounds 13 and 14 were found to inhibit the growth of MCF 7 and MDA-MB-231 cells (IC50s 1 ± 0.4 µM and 1 ± 0.2 µM for 13 and 14, respectively, and IC50 7.5 ± 1.3 µM for compound 13 and 1 ± 0.3 µM for compound 14). Incidentally, these doses were found to be lower than cisplatin doses (IC50 5 ± 0.7 µM for MCF 7 and 10 ± 1.1 µM for MDA-MB-231). Similar to cisplatin, 13 and 14 interacted with DNA and induced apoptosis. However, unlike cisplatin, they blocked the migration of MDA-MB-231 cells suggesting that in addition to apoptotic and DNA-binding capabilities, these compounds are useful in blocking the metastatic migration of breast cancer cells. To delineate the mechanism of action, computer-aided analyses (DFT calculations) were conducted for compound 13. Results indicate that in vivo, the pyridineamine ligands are likely to dissociate from the complex, forming a platinum DNA adduct with anti-proliferative activity. These results suggest that complexes 13 and 14 hold promise as potential anti-cancer agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641452PMC
http://dx.doi.org/10.1007/s00775-014-1133-6DOI Listing

Publication Analysis

Top Keywords

pyridineamine ligands
8
cancer cells
8
mda-mb-231 cells
8
ic50 µm
8
µm compound
8
µm
6
cisplatin
5
synthesis characterization
4
characterization evaluation
4
evaluation cis-diphenyl
4

Similar Publications

Herein, we present the different coordination modes of half-sandwich iridium(III) and rhodium(III) complexes based on pyridine-amine ligands. The pyridyl-amine iridium(III) and rhodium(III) complexes, the corresponding oxidation pyridyl-imine products, and 16-electron pyridyl-amido complexes can be obtained through the change in reaction conditions (nitrogen/adventitious oxygen atmosphere, reaction time, and solvents) and structural variations in the metal and ligand. Overall, the reaction of pyridine-amine ligands with [(η-C(CH))MCl] (M = Ir or Rh) in the presence of adventitious oxygen afforded the oxidized pyridyl-imine complexes.

View Article and Find Full Text PDF

The degradation pathways of highly active [Cp*Ir(κ -N,N-R-pica)Cl] catalysts (pica=picolinamidate; 1 R=H, 2 R=Me) for formic acid (FA) dehydrogenation were investigated by NMR spectroscopy and DFT calculations. Under acidic conditions (1 equiv. of HNO ), 2 undergoes partial protonation of the amide moiety, inducing rapid κ -N,N to κ -N,O ligand isomerization.

View Article and Find Full Text PDF

Photocatalytic reduction of CO to CO and formate by a novel Co(ii) catalyst containing a cis-oxygen atom: photocatalysis and DFT calculations.

Dalton Trans

October 2018

Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. and Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, P. R. China.

The conversion of carbon dioxide (CO) to fuels or value-added chemicals by a photocatalytic system has recently been of growing research interest. One of the challenges is the development of new catalysts with high activity and low cost. Cobalt complexes have long been used as catalysts for the reduction of CO in either electrochemical or photochemical systems.

View Article and Find Full Text PDF

The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands.

View Article and Find Full Text PDF

Although cisplatin is considered as an effective anti-cancer agent, it has shown limitations and may produce toxicity in patients. Therefore, we synthesized two cis-dichlorideplatinum(II) compounds (13 and 14) composed of meta- and para-N,N-diphenyl pyridineamine ligands through a reaction of the amine precursors and PtCl2 with respective yields of 16 and 47 %. We hypothesized that compounds 13 and 14, with lipophilic ligands, should transport efficiently in cancer cells and demonstrate more effectiveness than cisplatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!