Both human immunodeficiency virus (HIV)-1 infection and illicit stimulant use can adversely impact neurocognitive functioning, and these effects can be additive. However, significant variability exists such that as-of-yet unidentified exogenous and endogenous factors affect one's risk for neurocognitive impairment. Literature on both HIV and stimulant use indicates that host genetic variants in immunologic and dopamine-related genes are one such factor. In this study, the individual and interactive effects of HIV status, stimulant use, and genotype upon neurocognitive functioning were examined longitudinally over a 10-year period. Nine hundred fifty-two Caucasian HIV+ and HIV- cases from the Multicenter AIDS Cohort Study were included. All cases had at least two comprehensive neurocognitive evaluations between 1985 and 1995. Pre-highly active antiretroviral therapy (HAART) data were examined in order to avoid the confounding effect of variable drug regimens. Linear mixed models were used, with neurocognitive domain scores as the outcome variables. No four-way interactions were found, indicating that HIV and stimulant use do not interact over time to affect neurocognitive functioning as a function of genotype. Multiple three-way interactions were found that involved genotype and HIV status. All immunologically related genes found to interact with HIV status affected neurocognitive functioning in the expected direction; however, only C-C chemokine ligand 2 (CCL2) and CCL3 affected HIV+ individuals specifically. Dopamine-related genetic variants generally affected HIV-negative individuals only. Neurocognitive functioning among HIV+ individuals who also used stimulants was not significantly different from those who did not use stimulants. The findings support the role of immunologically related genetic differences in CCL2 and CCL3 in neurocognitive functioning among HIV+ individuals; however, their impact is minor. Being consistent with findings from another cohort, dopamine (DA)-related genetic differences do not appear to impact the longitudinal neurocognitive functioning of HIV+ individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040160PMC
http://dx.doi.org/10.1007/s13365-014-0241-yDOI Listing

Publication Analysis

Top Keywords

neurocognitive functioning
32
hiv status
16
hiv+ individuals
16
functioning hiv+
12
neurocognitive
11
interactive effects
8
effects hiv
8
status stimulant
8
genotype neurocognitive
8
functioning
8

Similar Publications

Background: To study how early gross motor development links to concurrent prelinguistic and social development.

Methods: We recruited a population-based longitudinal sample of 107 infants between 6 and 21 months of age. Gross motor performance was quantified using novel wearable technology for at-home recordings of infants' spontaneous activity.

View Article and Find Full Text PDF

MicroRNA in neuroexosome as a potential biomarker for HIV-associated neurocognitive disorders.

J Neurovirol

January 2025

Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.

HIV-associated neurocognitive disorder (HAND) is a complication of chronic inflammation caused by HIV infection that impairs cognitive and motor functions. HAND can occur at any age, regardless of the duration of infection, even in people living with HIV (PLWH) whose blood viral load is controlled by antiretroviral therapy. The diagnosis of HAND requires a battery of neuropsychological tests, which is time-consuming and burdensome, limiting its effectiveness for screening PLWH.

View Article and Find Full Text PDF

Alzheimer's disease is a neurodegenerative disorder that impairs neurocognitive functions. Acetylcholinesterase, Butyrylcholinesterase, Monoamine Oxidase B, Beta-Secretase, and Glycogen Synthase Kinase Beta play central roles in its pathogenesis. Current medications primarily inhibit AChE but fail to halt or reverse disease progression due to the multifactorial nature of Alzheimer's.

View Article and Find Full Text PDF

Background: The gut-kidney axis is implicated in chronic kidney disease (CKD) morbidity. We describe how a panel of gut microbiome-derived toxins relates to kidney function and neurocognitive outcomes in children with CKD, consisting of indoleacetate, 3-indoxylsulfate, p-cresol glucuronide, p-cresol sulfate, and phenylacetylglutamine.

Methods: The Chronic Kidney Disease in Children (CKiD) cohort is a North American multicenter prospective cohort that enrolled children aged 6 months to 16 years with estimated glomerular filtration rate (eGFR) 30-89 ml/min/1.

View Article and Find Full Text PDF

Objective: Bipolar disorder (BD), schizoaffective disorder (SAD), and schizophrenia (SCH) are psychiatric disorders characterized by persistent cognitive impairments, even during periods of remission. Psychotropic medications commonly used to manage these conditions have anticholinergic properties, which may contribute to cognitive impairment.

Methods: This study examined the relationship between anticholinergic medication burden and cognitive function in individuals diagnosed with BD, SAD, and SCH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!