Disease resistance in Atlantic salmon (Salmo salar): coinfection of the intracellular bacterial pathogen Piscirickettsia salmonis and the sea louse Caligus rogercresseyi.

PLoS One

Aquainnovo S.A, Puerto Montt, Chile; Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile.

Published: May 2015

Background: Naturally occurring coinfections of pathogens have been reported in salmonids, but their consequences on disease resistance are unclear. We hypothesized that 1) coinfection of Caligus rogercresseyi reduces the resistance of Atlantic salmon to Piscirickettsia salmonis; and 2) coinfection resistance is a heritable trait that does not correlate with resistance to a single infection.

Methodology: In total, 1,634 pedigreed Atlantic salmon were exposed to a single infection (SI) of P. salmonis (primary pathogen) or coinfection with C. rogercresseyi (secondary pathogen). Low and high level of coinfection were evaluated (LC = 44 copepodites per fish; HC = 88 copepodites per fish). Survival and quantitative genetic analyses were performed to determine the resistance to the single infection and coinfections.

Main Findings: C. rogercresseyi significantly increased the mortality in fish infected with P. salmonis (SI mortality = 251/545; LC mortality = 544/544 and HC mortality = 545/545). Heritability estimates for resistance to P. salmonis were similar and of medium magnitude in all treatments (h2SI = 0.23 ± 0.07; h2LC = 0.17 ± 0.08; h2HC = 0.24 ± 0.07). A large and significant genetic correlation with regard to resistance was observed between coinfection treatments (rg LC-HC = 0.99 ± 0.01) but not between the single and coinfection treatments (rg SI-LC = -0.14 ± 0.33; rg SI-HC = 0.32 ± 0.34).

Conclusions/significance: C. rogercresseyi, as a secondary pathogen, reduces the resistance of Atlantic salmon to the pathogen P. salmonis. Resistance to coinfection of Piscirickettsia salmonis and Caligus rogercresseyi in Atlantic salmon is a heritable trait. The absence of a genetic correlation between resistance to a single infection and resistance to coinfection indicates that different genes control these processes. Coinfection of different pathogens and resistance to coinfection needs to be considered in future research on salmon farming, selective breeding and conservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988197PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095397PLOS

Publication Analysis

Top Keywords

atlantic salmon
20
resistance atlantic
12
piscirickettsia salmonis
12
caligus rogercresseyi
12
resistance
12
resistance single
12
single infection
12
resistance coinfection
12
coinfection
11
disease resistance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!