Acquired secondary mutations in the anaplastic lymphoma kinase (ALK) gene have been identified in ALK-rearranged (ALK+) non-small-cell lung cancer (NSCLC) patients who developed disease progression while on crizotinib treatment. Here, we identified a novel secondary acquired NSCLC ALK F1174V mutation by comprehensive next-generation sequencing in one ALK+ NSCLC patient who progressed on crizotinib after a prolonged partial response to crizotinib. In a second case, we identified a secondary acquired ALK G1202R, which also confers resistance to alectinib (CH5424802/RO5424802), a second-generation ALK inhibitor that can inhibit ALK gatekeeper L1196M mutation in vitro. ALK G1202R is located at the solvent front of the ALK kinase domain and exhibits a high level of resistance to all other ALK inhibitors currently in clinical development in vitro. Comprehensive genomic profiling of resistant tumor is increasingly important in tailoring treatment decisions after disease progression on crizotinib in ALK+ NSCLC given the promise of second-generation ALK inhibitors and other therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/JTO.0000000000000094 | DOI Listing |
PLoS One
January 2025
Department of Basic Sciences, Bioethics and Human Life, Faculty of Human Medicine, University of Piura, Miraflores, Lima, Perú.
The anaplastic lymphoma kinase (ALK) oncoprotein plays a crucial role in non-small cell lung cancer (NSCLC) by activating signaling pathways involved in cell proliferation and survival through constitutive phosphorylation. While first-line crizotinib can regulate phosphorylation, mutations in the ALK gene can lead to resistance against ALK inhibitors (ALKi) such as ceritinib and alectinib. On the other hand, overexpression of BCL2, a protein involved in cell death regulation, has been observed in NSCLC and is considered a potential therapeutic target.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
Targeted covalent inhibitors (TCIs) play an essential role in the fields of kinase research and drug discovery. TCI strategies to target more common amino acid side-chains have yet to be demonstrated. Targeting other amino acids would also expand the pharmaceutical industry's toolbox for targeting other tough-to-drug proteins.
View Article and Find Full Text PDFCureus
November 2024
Hematology and Medical Oncology, Tripler Army Medical Center, Honolulu, USA.
The anaplastic lymphoma kinase (ALK) gene plays crucial roles in both normal brain development and oncogenesis, particularly in non-small cell lung cancer (NSCLC). Metastatic ALK-positive NSCLC is characterized by ALK tyrosine kinase domain rearrangements, prompting the use of ALK tyrosine kinase inhibitors (TKIs) to target the mutation. While first-line treatment options include alectinib, brigatinib, and lorlatinib per National Comprehensive Cancer Network (NCCN) guidelines, therapeutic challenges arise in cases of disease progression.
View Article and Find Full Text PDFComput Biol Med
December 2024
Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China. Electronic address:
A number of anaplastic lymphoma kinase (ALK) inhibitors have been clinically approved, with lorlatinib, particularly as a third-generation drug, demonstrating efficacy against various drug-resistant ALK single mutations. However, continued clinical use of lorlatinib has led to the emergence of ALK double mutations conferring resistance to lorlatinib, notably ALK. TPX-0131 is a potential fourth-generation ALK inhibitor currently under development.
View Article and Find Full Text PDFLung Cancer
November 2024
Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562 Aomori, Japan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!