AI Article Synopsis

  • Neuronostatin is a peptide hormone linked to glucose regulation, specifically influencing glucagon production in pancreatic α-cells.
  • Intraperitoneal administration in mice and in vitro studies reveal that neuronostatin enhances glucagon release during low glucose conditions while inhibiting insulin secretion in response to high glucose.
  • Overall, neuronostatin appears to play a significant role in glucose homeostasis by affecting the interactions between α-cells and β-cells in the pancreas, ultimately modulating insulin secretion.

Article Abstract

Neuronostatin is a recently described peptide hormone encoded by the somatostatin gene. We previously showed that intraperitoneal injection of neuronostatin into mice resulted in c-Jun accumulation in pancreatic islets in a pattern consistent with the activation of glucagon-producing α-cells. We therefore hypothesized that neuronostatin could influence glucose homeostasis via a direct effect on the α-cell. Neuronostatin enhanced low-glucose-induced glucagon release in isolated rat islets and in the immortalized α-cell line αTC1-9. Furthermore, incubation with neuronostatin led to an increase in transcription of glucagon mRNA, as determined by RT-PCR. Neuronostatin also inhibited glucose-stimulated insulin secretion from isolated islets. However, neuronostatin did not alter insulin release from the β-cell line INS 832/13, indicating that the effect of neuronostatin on insulin secretion may be secondary to a direct action on the α-cell. In agreement with our in vitro data, intra-arterial infusion of neuronostatin in male rats delayed glucose disposal and inhibited insulin release during a glucose challenge. These studies suggest that neuronostatin participates in maintaining glucose homeostasis through cell-cell interactions between α-cells and β-cells in the endocrine pancreas, leading to attenuation in insulin secretion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4042099PMC
http://dx.doi.org/10.1152/ajpendo.00599.2013DOI Listing

Publication Analysis

Top Keywords

insulin secretion
16
neuronostatin
11
glucose-stimulated insulin
8
direct action
8
α-cell neuronostatin
8
glucose homeostasis
8
insulin release
8
insulin
6
neuronostatin inhibits
4
inhibits glucose-stimulated
4

Similar Publications

Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.

View Article and Find Full Text PDF

Effects of tryptophan-selective lipidated GLP-1 peptides on the GLP-1 receptor.

J Endocrinol

January 2025

N Inagaki, Department of Diabetes, Endocrinology and Nutrition, Kyoto University, Kyoto, Japan.

Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1 RAs) are widely used as antidiabetic and anti-obesity agents. Although conventional GLP-1 RAs such as liraglutide and semaglutide are acylated with fatty acids to delay their degradation by dipeptidylpeptidase-4 (DPP-4), the manufacturing process is challenging. We previously developed selectively lipidated GLP-1 peptides at their only tryptophan residue (peptide A having one 8-amino-3,6-dioxaoctanoic acid (miniPEG) linker and peptide B having three miniPEG linkers).

View Article and Find Full Text PDF

Purpose: Imeglimin is a novel oral antidiabetic agent that improves glucose tolerance. This study aimed to investigate the efficacy of combining imeglimin with dipeptidyl peptidase-4 inhibitor (DPP-4i), the most frequently prescribed first-line treatment for patients with type 2 diabetes (T2D) in Japan, to improve glycemic control.

Patients And Methods: Eleven patients with T2D treated with DPP-4i alone (6.

View Article and Find Full Text PDF

Effect of insulin sensitivity, insulin secretion, and beta cell function on the remission of type 2 diabetes: A post hoc analysis of the IDEATE trial.

Diabetes Obes Metab

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Aims: To compare the probability of achieving diabetes remission in individuals with different phenotypes of insulin sensitivity, insulin secretion, and beta cell function and further detect the effects of diet, exercise, and lifestyle education intervention on these indexes.

Methods: Three-hundred and one participants who had glycated haemoglobin (HbA1c) data at baseline and after intervention were included for this post hoc analysis. We used the multi-way analysis of variance to assess the differences between the diabetes remission and non-remission groups or between intervention groups in changes of the indexes of insulin sensitivity, insulin secretion, and beta cell function.

View Article and Find Full Text PDF

Long-term blood glucose control via glucose-activated transcriptional regulation of insulin analogue in type 1 diabetes mice.

Diabetes Obes Metab

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.

Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!