Doxorubicin (DOX) is a potent cancer chemotherapeutic agent, but its clinical use is severely limited by potentially lethal cardiotoxicity. Delivery of DOX by particulate carriers can be an effective way to reduce its distribution in cardiac tissue. In the present study, we developed a self-assembled, tumor-microenvironment-responsive delivery system for DOX. The core of the carrier was built upon the DOX/DNA intercalation, which was further combined with cationic gelatin (C-gel) to form the complex GDD. GDD was then packaged into a complex, namely, HDD, based on the electrostatic interactions between the positively charged C-gel and negatively charged human serum albumin (HSA). The HSA molecules on the surface of the complex HDD effectively helped the particle evade the filtration of the body when injected into the circulation and passively accumulate into the tumor sites. After entering the tumor tissue, where albumin is rapidly consumed, GDD was release from HDD and the C-gel was then digested by the tumor-specific matrix metalloproteinase (MMPs) to free the DOX/DNA intercalation. Deoxyribonucleases (DNases) in the tissue could completely destroy the DNA molecules to release DOX into the microenvironments. After a series of in vitro optimization tests, we evaluated the anticancer capacity and cardiac toxicity of HDD in two animal models with cancer. The results suggested that HDD had a higher anticancer efficacy and a significantly lower cardiotoxicity than free DOX. Additionally, the main components of the carrier are all clinically approved materials. Taken together, our present delivery system is safe and efficient and has high potential for further clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mp4007776 | DOI Listing |
J Med Internet Res
January 2025
Diabetes Management Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
Background: Although commercially developed automated insulin delivery (AID) systems have recently been approved and become available in a limited number of countries, they are not universally available, accessible, or affordable. Therefore, open-source AID systems, cocreated by an online community of people with diabetes and their families behind the hashtag #WeAreNotWaiting, have become increasingly popular.
Objective: This study focused on examining the lived experiences, physical and emotional health implications of people with diabetes following the initiation of open-source AID systems, their perceived challenges, and their sources of support, which have not been explored in the existing literature.
PLOS Glob Public Health
January 2025
Ministry of Health, Nairobi, Kenya.
Kenya is committed to achieving Universal Health Coverage (UHC) within its devolved health system in which significant investments have been made in health infrastructure, workforce development, and service delivery. Despite these efforts, the country faces considerable health workforce challenges. To address these, the Ministry of Health undertook a comprehensive Health Labour Market Analysis (HLMA) in 2022 to generate evidence supporting the development of responsive health workforce policies.
View Article and Find Full Text PDFPLOS Glob Public Health
January 2025
Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America.
Dispensing of misoprostol and mifepristone by pharmacies and chemist shops for self-management of medication abortion (MA) fills a crucial gap in settings where abortion care by trained health professionals is not readily available. This promising service delivery pathway, endorsed by the World Health Organization (WHO), is hindered by concerns of poor-quality care. Simulated clients collected data on MA pill dispensing practices from 92 pharmacies and chemist shops in three Nigerian states and 127 pharmacies in an Indian state that we have anonymized.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
Personalized neoantigen cancer mRNA vaccines are promising candidates for precision medicine. However, the difficulty of identifying neoantigens heavily hinders their broad applicability. This study developed a universal strategy of anti-tumor mRNA vaccine by harnessing "off-the-shelf" immunity to known antigens.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States.
Intracellular delivery of proteins can directly impact dysregulated and dysfunctional proteins and is a key step in the fast growing field of protein therapeutics. The vast majority of protein-delivery systems enter cells through endocytic pathways, but endosomal escape is a difficult and inefficient process, demanding fundamentally different methods of delivery. We report ultrasmall cationic molecularly imprinted nanoparticles that bind protein targets with high specificity through their uniquely distributed surface lysine groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!