Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The complex coupling of atomic, chemical, and electronic transformations across multiple length scales underlies the performance of electrochemical energy storage devices. Here, the coupling of chemistry with atomic- and nanoscale structure in iron conversion electrodes is resolved by combining pair distribution function (PDF) and small-angle X-ray scattering (SAXS) analysis for a series of Fe fluorides, oxyfluorides, and oxides. The data show that the anion chemistry of the initial electrode influences the abundance of atomic defects in the Fe atomic lattice. This, in turn, is linked to different atom mobilities and propensity for particle growth. Competitive nanoparticle growth in mixed anion systems contributes to a distinct nanostructure, without the interconnected metallic nanoparticles formed for single anion systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja501854y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!