A new secondary isotopic reference material has been prepared from Puerto Rico precipitation, which was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and calibrated by dual-inlet isotope-ratio mass spectrometry. This isotopic reference material, designated as USGS48, is intended to be one of two isotopic reference waters for daily normalisation of stable hydrogen (δ(2)H) and stable oxygen (δ(18)O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The δ(2)H and δ(18)O values of this reference water are-2.0±0.4 and-2.224±0.012 ‰, respectively, relative to Vienna Standard Mean Ocean Water on scales normalised such that the δ(2)H and δ(18)O values of Standard Light Antarctic Precipitation reference water are-428 and-55.5 ‰, respectively. Each uncertainty is an estimated expanded uncertainty (U=2u(c)) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. This isotopic reference water is available by the case of 144 glass ampoules containing 5 mL of water in each ampoule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10256016.2014.905555 | DOI Listing |
Antibodies (Basel)
January 2025
Federal Institute of Material Testing and Research (BAM), 12489 Berlin, Germany.
This review describes mass spectrometry (MS)-based approaches for the absolute quantification of therapeutic monoclonal antibodies (mAbs), focusing on technical challenges in sample treatment and calibration. Therapeutic mAbs are crucial for treating cancer and inflammatory, infectious, and autoimmune diseases. We trace their development from hybridoma technology and the first murine mAbs in 1975 to today's chimeric and fully human mAbs.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Chengdu 611130, China. Electronic address:
The growing abuse of fentanyl and its analogues (FTNs) presents a substantial public health threat, prompting the introduction of regulatory controls by government authorities. Nevertheless, existing screening strategies for FTNs are primarily based on targeted or non-targeted approaches that utilize a limited set of mass spectrometry fragmentation data, which are far from meeting the needs of class scheduling. In this study, a comprehensive non-targeted screening strategy for FTNs was developed.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
Purpose: None of the antibody-drug conjugates (ADCs) targeting Claudin 18.2 (CLDN18.2) have received approval from regulatory authorities due to their limited clinical benefits.
View Article and Find Full Text PDFACS Earth Space Chem
January 2025
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Naturally occurring bedded salt deposits are considered robust for the permanent disposal of heat-generating nuclear waste due to their unique physical and geological properties. The Brine Availability Test in Salt (BATS) is a US-DOE Office of Nuclear Energy funded project that uses heated borehole experiments underground (∼655 meters depth) at the Waste Isolation Pilot Plant (WIPP) in the bedded salt deposits of the Salado Formation to investigate the capacity for safe disposal of high-level, heat generating nuclear waste in salt. Uncertainties associated with brine mobility near heat-generating waste motivates the need to characterize the processes and sources of brine in salt deposits.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!