Surface modification is used to regulate surface free energy of sepiolite with 3-glycidoxypropyltrimethoxysilanes (3-GPTMS), 3-methacryloxypropyltrimethoxysilanes (3-MAPTMS) and 3-mercaptopropyltrimethoxysilane (3-MPTMS). Through characterization by Fourier transform infrared spectroscopy, surface free energy, zeta potential and sedimentation measurements and infrared emissivity, it is found that the surface free energy of 3-MPTMS modified sepiolite decreases to 31.72 mJ/m2 and the percentage of polar component increases to 89.75%, thus leading to that the infrared emissivity of 3-MPTMS modified sepiolite increase to be higher than 0.8 and the dispersion of sepiolite has been improved. The excellent thermal insulation property of coating is prepared with 10% additive amount of 3-MPTMS modified sepiolite and the temperature difference between upper and lower box of modified sepiolite coatings is 10 degrees C which is higher than the untreated sepiolite.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2014.7980DOI Listing

Publication Analysis

Top Keywords

surface free
16
free energy
16
modified sepiolite
16
3-mptms modified
12
thermal insulation
8
insulation property
8
property coating
8
infrared emissivity
8
sepiolite
7
surface
5

Similar Publications

Silica Nanoparticle-Protein Aggregation and Protein Corona Formation Investigated with Scattering Techniques.

ACS Appl Mater Interfaces

January 2025

School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.

Protein-nanoparticle interactions and the resulting corona formation play crucial roles in the behavior and functionality of nanoparticles in biological environments. In this study, we present a comprehensive analysis of protein corona formation with superfolder green fluorescent protein (sfGFP) and bovine serum albumin in silica nanoparticle dispersions using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). For the first time, we subtracted the scattering of individual proteins in solution and individual nanoparticles from the protein-nanoparticle complexes.

View Article and Find Full Text PDF

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Lab on a single microbead: An enzyme-free strategy for the sensitive detection of microRNA via efficient localized catalytic hairpin assembly.

Anal Chim Acta

February 2025

Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China; Engineering Research Center of Brain Diseases Drug Development, Universities of Shaanxi Province, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, PR China. Electronic address:

Background: Accurate quantification of microRNA (miRNA) is of great significance because it provides opportunities for the accurate early diagnosis of a series of human diseases including cancers. Currently, complicated nucleic acid amplification technologies are always required for the highly sensitive miRNA detection. The introduction of nucleic acid signal amplification coupled with various enzymes will inevitably lead to tedious work and increase the complexity of the analysis process.

View Article and Find Full Text PDF

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!