AI Article Synopsis

  • GABA depolarizes embryonic cerebrocortical neurons and plays a role in their migration during neocortical development, but studies often rely on pharmacological blockers.
  • Using GABA synthesis-lacking GAD67-GFP knock-in mice, researchers found that while GABAAR activation didn't alter the distribution of labeled neurons, blocking GABAAR with SR95531 accelerated radial migration.
  • The study identified taurine, a substance sourced from maternal blood and abundant in fetal brains, as an alternative endogenous GABAAR agonist that regulates neuron migration, suggesting it may have a more significant role than GABA itself.

Article Abstract

γ-Aminobutyric acid (GABA) depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR) contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67(GFP/GFP)) to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose-response properties of labeled cells to GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67(GFP/GFP) mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidino)ethanesulfonic acid (GES), and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid, as examined through high-performance liquid chromatography. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the developing neocortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975117PMC
http://dx.doi.org/10.3389/fncel.2014.00088DOI Listing

Publication Analysis

Top Keywords

radial migration
16
labeled cells
12
gabaa receptor
8
migration neurons
8
gabaar
8
gad67-gfp knock-in
8
knock-in mice
8
equivalent genotypes
8
tonic currents
8
taurine
6

Similar Publications

The integration of self-expandable nitinol frames with cable-driven parallel mechanisms offers a promising advancement in minimally invasive cardiovascular interventions. This study presents the design, fabrication, and verification of a miniaturized self-expandable nitinol frame to enhance catheter tip steerability and navigation within complex vascular anatomies. The frame is reduced in size for delivery through 7-8 Fr sheaths while accommodating diverse vascular diameters, allowing up to a maximum expansion of 15 mm.

View Article and Find Full Text PDF

A comprehensive scientific analysis of temporal and spatial fluctuations of pollutants during the migration of groundwater is essential for precisely predicting their dispersion patterns and promoting rational regional development planning. In this research paper, a field radial dispersion test was conducted in decentralized drinking water sources downstream of the Fu Tuan River basin in Rizhao City, Shandong Province, China (FRSC). Chloride ion (Cl) solution was utilized as a tracer for the experiment.

View Article and Find Full Text PDF

The temporal control of mitotic exit of individual Schwann cells (SCs) is essential for radial sorting and peripheral myelination. However, it remains unknown when, during their multiple rounds of division, SCs initiate myelin signaling in vivo. By manipulating SC division during development, we report that when SCs skip their division during migration, but not during radial sorting, they fail to myelinate peripheral axons.

View Article and Find Full Text PDF

The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.

View Article and Find Full Text PDF

Rational Fabrication of Functionally-Graded Surfaces for Biological and Biomedical Applications.

Acc Mater Res

December 2024

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States.

As a ubiquitous feature of the biological world, gradation, in either composition or structure, is essential to many functions and processes. Taking protein gradation as an example, it plays a pivotal role in the development and evolution of human bodies, including stimulation and direction of the outgrowth of peripheral nerves in a developing fetus. It is also critically involved in wound healing by attracting and guiding immune cells to the site of injury or infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!