The vast potential applications of biomolecules that bind inorganic surfaces led mostly to the isolation of short peptides that target selectively specific materials. The demonstrated differential affinity toward certain surfaces created the impression that the recognition capacity of short peptides may match that of rigid biomolecules. In the following, we challenge this view by comparing the capacity of antibody molecules to discriminate between the (100) and (111A) facets of a gallium arsenide semiconductor crystal with the capacity of short peptides to do the same. Applying selection from several peptide and single chain phage display libraries, we find a number of antibody molecules that bind preferentially a given crystal facet but fail to isolate, in dozens of attempts, a single peptide capable of such recognition. The experiments underscore the importance of rigidity to the recognition of inorganic flat targets and therefore set limitations on potential applications of short peptides in biomimetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psc.2636 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Xihua University, College of Food and Bioengineering, CHINA.
Protein post-translational modifications (PTMs) play crucial roles in various cellular processes. Despite their significance, only a few PTMs have been extensively studied at the proteome level, primarily due to the scarcity of reliable, convenient, and low-cost sensing methods. Here, we present a straightforward and effective strategy for detecting PTMs on short peptides through host-guest interaction-assisted nanopore sensing.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain.
The growing demand for environmentally friendly semiconductors that can be tailored and developed easily is compelling researchers and technologists to design inherently bio-compatible, self-assembling nanostructures with tunable semiconducting characteristics. Peptide-based bioinspired materials exhibit a variety of supramolecular morphologies and have the potential to function as organic semiconductors. Such biologically or naturally derived peptides with intrinsic semiconducting characteristics create new opportunities for sustainable biomolecule-based optoelectronics devices.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
Recent advancements in tissue engineering and regenerative medicine have introduced promising strategies to address tissue and organ deficiencies. This review highlights the critical role of short peptides, particularly their ability to self-assemble into matrices that mimic the extracellular matrix (ECM). These low molecular weight peptides exhibit target-specific activities, modulate gene expression, and influence cell differentiation pathways.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany. Electronic address:
Butyrate may decrease intestinal inflammation and diarrhea. This study investigates the impact of oral application of sodium butyrate (NaB) and tributyrin (TB) on colonic butyrate concentration, SCFA transporter expression, colonic absorptive function, barrier properties, inflammation, and microbial composition in the colon of slc26a3 mice, a mouse model for inflammatory diarrhea. In vivo fluid absorption and bicarbonate secretory rates were evaluated in the cecum and mid-colon of slc26a3 and slc26a3 mice before and during luminal perfusion of NaB-containing saline and were significantly stimulated in both slc26a3 and slc26a3 colon by NaB.
View Article and Find Full Text PDFPLoS One
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.
Purpose: Rose Bengal Photodynamic Therapy (RB-PDT) offers dual therapeutic benefits by enhancing corneal stiffness and providing antibacterial activity, presenting significant potential for patients with keratoconus complicated by keratitis. Our purpose was to assess the effect of rose bengal photodynamic therapy (RB-PDT) on the expression of pro-inflammatory cytokines and chemokines, as well as on extracellular matrix (ECM)-related molecules, in lipopolysaccharide (LPS)-induced inflammation of keratoconus human corneal fibroblasts (KC-HCFs). Additionally, the involvement of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways which are downstream of the Toll-like receptor 4 (TLR4) pathway were examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!