The objective of this work was to explore the origin of local B1 (+) perturbations in the ventricles measured at 7 T. The B1 (+) field in the human brain was mapped using four different MRI techniques: dual refocusing echo acquisition mode (DREAM), actual flip-angle imaging (AFI), saturated double-angle method (SDAM) and Bloch-Siegert shift (BSS). Electromagnetic field simulations of B1 (+) were performed in male and female subject models to assess the dependence of the B1 (+) distribution on the dielectric properties of cerebrospinal fluid and subject anatomy. All four B1 (+) mapping techniques, based on different B1 (+) encoding mechanisms, show 'residual' structure of the ventricles, with a slightly enhanced B1 (+) field in the ventricles. Electromagnetic field simulations indicate that this effect is real and arises from the strong contrast in electrical conductivity between cerebrospinal fluid and brain tissue. The simulated results were in good agreement with those obtained in three volunteers. Measured local B1 (+) perturbations in the ventricles at 7 T can be partially explained by the high contrast in electrical conductivity between cerebrospinal fluid and white matter, in addition to effects related to the particular B1 (+) measurement technique used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.3112 | DOI Listing |
J Integr Neurosci
January 2025
Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy.
The complicated neurological syndrome known as multiple sclerosis (MS) is typified by demyelination, inflammation, and neurodegeneration in the central nervous system (CNS). Managing this crippling illness requires an understanding of the complex interactions between neurophysiological systems, diagnostic techniques, and therapeutic methods. A complex series of processes, including immunological dysregulation, inflammation, and neurodegeneration, are involved in the pathogenesis of MS.
View Article and Find Full Text PDFMult Scler
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Testing for myelin oligodendrocyte glycoprotein immunoglobulin G antibodies (MOG-IgG) is essential to the diagnosis of MOG antibody-associated disease (MOGAD). Due to its central role in the evaluation of suspected inflammatory demyelinating disease, the last 5 years has been marked by an abundance of research into MOG-IgG testing ranging from appropriate patient selection, to assay performance, to utility of serum titers as well as cerebrospinal fluid (CSF) testing. In this review, we synthesize current knowledge pertaining to the "who, what, where, when, why, and how" of MOG-IgG testing, with the aim of facilitating accurate MOGAD diagnosis in clinical practice.
View Article and Find Full Text PDFViruses
January 2025
Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar 200, Senegal.
Neurological manifestations associated with human parvovirus B19 (B19V) infections are rare and varied. Acute encephalitis and encephalopathy are the most common, accounting for 38.8% of all neurological manifestations associated with human B19V.
View Article and Find Full Text PDFViruses
January 2025
Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil.
Background And Objectives: HTLV-1-associated myelopathy (HAM) is a chronic progressive inflammatory disease of the spinal cord. This study assesses the diagnostic accuracy of the neuroinflammatory biomarkers neopterin and cysteine-X-cysteine motif chemokine ligand 10 (CXCL-10) in cerebrospinal fluid (CSF) for HAM.
Methods: CSF samples from 75 patients with neurological disorders-33 with HAM (Group A), 19 HTLV-1-seronegative with other neuroinflammatory diseases (Group B), and 23 HTLV-1-seronegative with non-neuroinflammatory diseases (Group C)-were retrospectively evaluated.
Viruses
December 2024
Life Sciences, Health, and Engineering Department, The Roux Institute, Northeastern University, Portland, ME 04101, USA.
JC polyomavirus (JCPyV) establishes a persistent, asymptomatic kidney infection in most of the population. However, JCPyV can reactivate in immunocompromised individuals and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease with no approved treatment. Mutations in the hypervariable non-coding control region (NCCR) of the JCPyV genome have been linked to disease outcomes and neuropathogenesis, yet few metanalyses document these associations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!