Organohalide respiration, mediated by Dehalococcoides mccartyi, is a useful bioremediation process that transforms ground water pollutants and known human carcinogens such as trichloroethene and vinyl chloride into benign ethenes. Successful application of this process depends on the fundamental understanding of the respiration and metabolism of D. mccartyi. Reductive dehalogenases, encoded by rdhA genes of these anaerobic bacteria, exclusively catalyze organohalide respiration and drive metabolism. To better elucidate D. mccartyi metabolism and physiology, we analyzed available transcriptomic data for a pure isolate (Dehalococcoides mccartyi strain 195) and a mixed microbial consortium (KB-1) using the previously developed pan-genome-scale reconstructed metabolic network of D. mccartyi. The transcriptomic data, together with available proteomic data helped confirm transcription and expression of the majority genes in D. mccartyi genomes. A composite genome of two highly similar D. mccartyi strains (KB-1 Dhc) from the KB-1 metagenome sequence was constructed, and operon prediction was conducted for this composite genome and other single genomes. This operon analysis, together with the quality threshold clustering analysis of transcriptomic data helped generate experimentally testable hypotheses regarding the function of a number of hypothetical proteins and the poorly understood mechanism of energy conservation in D. mccartyi. We also identified functionally enriched important clusters (13 for strain 195 and 11 for KB-1 Dhc) of co-expressed metabolic genes using information from the reconstructed metabolic network. This analysis highlighted some metabolic genes and processes, including lipid metabolism, energy metabolism, and transport that potentially play important roles in organohalide respiration. Overall, this study shows the importance of an organism's metabolic reconstruction in analyzing various "omics" data to obtain improved understanding of the metabolism and physiology of the organism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986231 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094808 | PLOS |
Front Microbiol
October 2024
Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
Microorganisms capable of direct or mediated extracellular electron transfer (EET) have garnered significant attention for their various biotechnological applications, such as bioremediation, metal recovery, wastewater treatment, energy generation in microbial fuel cells, and microbial or enzymatic electrosynthesis. One microorganism of particular interest is the organohalide-respiring bacterium strain CBDB1, known for its ability to reductively dehalogenate toxic and persistent halogenated organic compounds through organohalide respiration (OHR), using halogenated organics as terminal electron acceptors. A membrane-bound OHR protein complex couples electron transfer to proton translocation across the membrane, generating a proton motive force, which enables metabolism and proliferation.
View Article and Find Full Text PDFWater Res
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China. Electronic address:
Hundreds of studies have demonstrated the bioremediation of chlorinated organic pollutants (COPs) in flooded environments. However, the role of specific functional strains in degrading COPs under complex media such as wetlands is still unclear. Here, we focused on the microbial characteristics of COP-polluted sediments, identified the bacteria responsible for degradation and conducted a genomic analysis of these bacteria.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan. Electronic address:
Water Res
May 2024
Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576. Electronic address:
Dehalococcoides are capable of dehalogenating various organohalide pollutants under anaerobic conditions, and they have been applied in bioremediation. However, the presence of multiple aromatic organohalides, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), at contaminated sites may pose challenges to Dehalococcoides-mediated bioremediation due to the lack of knowledge about the influence of co-contamination on bioremediation. In this study, we investigated the bioremediation of aromatic organohalides present as individual and co-contaminants in sediments by bioaugmentation with a single population of Dehalococcoides.
View Article and Find Full Text PDFEnviron Pollut
April 2024
State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
Anaerobic microbial transformation is a key pathway in the natural attenuation of polychlorinated biphenyls (PCBs). Much less is known about the transformation behaviors induced by pure organohalide-respiring bacteria, especially kinetic isotope effects. Therefore, the kinetics, pathways, enantioselectivity, and carbon and chlorine isotope fractionation of PCBs transformation by Dehalococcoides mccartyi CG1 were comprehensively explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!