There are many areas of science and technology where being able to generate vigorous, noncontact flow would be desirable. We have discovered that three dimensional, time-dependent electric or magnetic fields having key symmetries can be used to generate controlled fluid motion by the continuous injection of energy. Unlike natural convection, this approach does not require a thermal gradient as an energy source, nor does it require gravity, so space applications are feasible. The result is a highly active material we call a vortex fluid. The homogeneous torque density of this fluid enables it to climb walls, induce ballistic droplet motion, and mix vigorously, even in such complex geometries as porous media. This vortex fluid can also exhibit a negative viscosity, which can immeasurably extend the control range of the "smart fluids" used in electro- and magnetorheological devices and can thus significantly increase their performance. Because the applied fields are uniform and modest in strength, vortex fluids of any scale can be created, making applications of any size, from directing microdroplet motion to controlling damping in magnetorheological dampers that protect bridges and buildings from earthquakes, feasible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4sm00280f | DOI Listing |
Am J Ophthalmol Case Rep
March 2025
Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Purpose: To report a case of bilateral choroidal osteoma successfully treated with subscleral sclerectomy for secondary serous retinal detachment (SRD).
Observations: A 52-year-old Japanese woman first diagnosed with Vogt-Koyanagi-Harada disease and treated with steroids for 9 years was referred to our clinic. SRD in both eyes recurred frequently and was uncontrolled with adalimumab subcutaneous injections and oral cyclosporine, in addition to steroids.
J Biomech
January 2025
Faculty of Sport and Health Science, Ritsumeikan University, Japan.
Swimmers propel their bodies forward by generating vortices around themselves, which produce fluid force during underwater undulatory swimming (UUS). This study aimed to investigate the propulsive and braking contributions of the vortices of the lower limbs, trunk, and upper limbs during UUS. The kinematic data and three-dimensional digital model were collected from nine male swimmers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
École polytechnique fédérale de Lausanne, School of Engineering, Institute of Mechanical Engineering, Unsteady Flow Diagnostics Laboratory, Lausanne 1015, Switzerland.
Airborne insects generate a leading edge vortex when they flap their wings. This coherent vortex is a low-pressure region that enhances the lift of flapping wings compared to fixed wings. Insect wings are thin membranes strengthened by a system of veins that does not allow large wing deformations.
View Article and Find Full Text PDFComput Biol Med
January 2025
LaBS, Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy. Electronic address:
In the context of dynamic image-based computational fluid dynamics (DIB-CFD) modeling of cardiac system, the role of sub-valvular apparatus (chordae tendineae and papillary muscles) and the effects of different mitral valve (MV) opening/closure dynamics, have not been systemically determined. To provide a partial filling of this gap, in this study we performed DIB-CFD numerical experiments in the left ventricle, left atrium and aortic root, with the aim of highlighting the influence on the numerical results of two specific modeling scenarios: (i) the presence of the sub-valvular apparatus, consisting of chordae tendineae and papillary muscles; (ii) different MV dynamics models accounting for different use of leaflet reconstruction from imaging. This is performed for one healthy subject and one patient with mitral valve regurgitation.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Istanbul Ticaret University, 34854 Maltepe, Turkey.
An automated micro-tweezers system with a flexible workspace would benefit the intelligent sorting of live cells. Such micro-tweezers could employ a forced vortex strong enough to capture a single cell. Furthermore, addressable control of the position to the vortex would constitute a robotic system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!