The utility of chromosome microdissection in clinical cytogenetics: a new reciprocal translocation in sheep.

Cytogenet Genome Res

National Research Council (CNR-ISPAAM), Laboratory of Animal Cytogenetics and Gene Mapping, Naples, Italy.

Published: July 2014

Local sheep breeders and scientists in Italy cooperate and conduct research on the genetic improvement of autochthonous genetic types (AGTs) by various approaches, including a cytogenetic breeding selection since 2011. The Laticauda sheep (Ovis aries, 2n = 54) breed is one of the AGTs reared in the Campania region (southern Italy). Performing cytogenetic analyses, we have detected and described a novel reciprocal translocation in a Laticauda sheep identified as 54,XX t(18;23)(q14;q26). Our data support recurring appeals that suggest the regular performance of cytogenetic analyses for monitoring genetic health of livestock species. In total, 5 cases of reciprocal translocations in sheep are known, including the new case. None of them has any phenotypic effect on the living offspring. However, affected animals are characterized by sterility or have a low fertility which can have an effect on breeding success and on economical balance. Presence and kind of the described novel chromosomal aberration were detected by performing CBA-banding and FISH mapping with telomeric probes. RBA-banding allowed the karyotyping of sheep chromosomes and the identification of aberrant chromosomes and regions involved in the new reciprocal translocation. Whole chromosome painting (WCP) probes received from equivalent chromosomes in cattle and the derivative sheep chromosome 18 confirmed the cytogenetic data. This way, our study underlined both the importance of WCP probes by chromosome microdissection and a new way to use WCP probes directly generated from derivative chromosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000361000DOI Listing

Publication Analysis

Top Keywords

reciprocal translocation
12
wcp probes
12
chromosome microdissection
8
laticauda sheep
8
cytogenetic analyses
8
described novel
8
sheep
7
utility chromosome
4
microdissection clinical
4
clinical cytogenetics
4

Similar Publications

Identification of chromosomal abnormalities is an important issue in animal breeding and veterinary medicine. Routine cytogenetic diagnosis of domestic animals began in the 1960s with the aim of identifying carriers of centric fusion between chromosome 1 and 29 in cattle. In the 1970s, chromosome banding techniques were introduced, and in the 1980s, the first cytogenomic techniques, based on the development of locus- and chromosome-specific probes, were used.

View Article and Find Full Text PDF

Reciprocal translocation experiments reveal gut microbiome plasticity and host specificity in a Qinghai-Xizang Plateau lizard.

Zool Res

January 2025

Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:

Animal adaptation to environmental challenges is a complex process involving intricate interactions between the host genotype and gut microbiome composition. The gut microbiome, highly responsive to external environmental factors, plays a crucial role in host adaptability and may facilitate local adaptation within species. Concurrently, the genetic background of host populations influences gut microbiome composition, highlighting the bidirectional relationship between host and microbiome.

View Article and Find Full Text PDF

Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.

View Article and Find Full Text PDF

Proper differentiation of bone marrow stromal cells (BMSCs) into adipocytes is crucial for maintaining skeletal homeostasis. However, the underlying regulatory mechanisms remain incompletely understood, posing a challenge for the treatment of age-related osteopenia and osteoporosis. Here, through comprehensive gene expression analysis during BMSC differentiation into adipocytes, we identified the forkhead transcription factor Foxk2 as a key regulator of this process.

View Article and Find Full Text PDF

Background: A thorough analysis of genome evolution is fundamental for biodiversity understanding. The iconic monotremes (platypus and echidna) feature extraordinary biology. However, they also exhibit rearrangements in several chromosomes, especially in the sex chromosome chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!