We present double random projection methods for reconstruction of imaging data. The methods draw upon recent results in the random projection literature, particularly on low-rank matrix approximations, and the reconstruction algorithm has only two simple and noniterative steps, while the reconstruction error is close to the error of the optimal low-rank approximation by the truncated singular-value decomposition. We extend the often-required symmetric distributions of entries in a random-projection matrix to asymmetric distributions, which can be more easily implementable on imaging devices. Experimental results are provided on the subsampling of natural images and hyperspectral images, and on simulated compressible matrices. Comparisons with other random projection methods are also provided.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2014.2316642DOI Listing

Publication Analysis

Top Keywords

random projection
16
double random
8
projection methods
8
image reconstruction
4
reconstruction double
4
random
4
projection
4
projection double
4
methods reconstruction
4
reconstruction imaging
4

Similar Publications

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Evaluating Machine Learning and Deep Learning models for predicting Wind Turbine power output from environmental factors.

PLoS One

January 2025

Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.

This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).

View Article and Find Full Text PDF

A systematic review of Machine Learning and Deep Learning approaches in Mexico: challenges and opportunities.

Front Artif Intell

January 2025

CONAHCYT-Instituto Potosino de Investigación Científica y Tecnológica, A.C. División de Geociencias Aplicadas, San Luis Potosí, Mexico.

This systematic review provides a state-of-art of Artificial Intelligence (AI) models such as Machine Learning (ML) and Deep Learning (DL) development and its applications in Mexico in diverse fields. These models are recognized as powerful tools in many fields due to their capability to carry out several tasks such as forecasting, image classification, recognition, natural language processing, machine translation, etc. This review article aimed to provide comprehensive information on the Machine Learning and Deep Learning algorithms applied in Mexico.

View Article and Find Full Text PDF

The aim of the study is to apply mathematical methods to generate forecasts of the dynamics of random values of the percentage increase in the total number of infected people and the percentage increase in the total number of recovered and deceased patients. The obtained forecasts are used for retrospective forecasting of COVID-19 epidemic process dynamics in St. Petersburg and in Moscow.

View Article and Find Full Text PDF

Machine learning algorithms for predicting PTSD: a systematic review and meta-analysis.

BMC Med Inform Decis Mak

January 2025

Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, 2007, Australia.

This study aimed to compare and evaluate the prediction accuracy and risk of bias (ROB) of post-traumatic stress disorder (PTSD) predictive models. We conducted a systematic review and random-effect meta-analysis summarizing predictive model development and validation studies using machine learning in diverse samples to predict PTSD. Model performances were pooled using the area under the curve (AUC) with a 95% confidence interval (CI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!