Background: Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species.

Results: In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5'-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218.

Conclusion: We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986222PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094707PLOS

Publication Analysis

Top Keywords

vibrio vulnificus
12
phages
9
phage pv94
8
temperate phages
8
vibrio species
8
cholerae phages
8
temperate phage
8
sequence analysis
8
analysis pv94
8
pv94 genome
8

Similar Publications

() is a Gram-negative, halophilic bacillus known for causing severe infections such as gastroenteritis, necrotizing fasciitis, and septic shock, with mortality rates exceeding 50% in high-risk individuals. Transmission occurs primarily through the consumption of contaminated seafood, exposure of open wounds to infected water, or, in rare cases, insect bites. The bacterium thrives in warm, brackish waters with high salinity levels, and its prevalence is rising due to the effects of climate change, including warming ocean temperatures and expanding coastal habitats.

View Article and Find Full Text PDF

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Metagenomic sequencing is increasingly being employed to understand the assemblage and dynamics of the oyster microbiome. Specimen collection and processing steps can impact the resultant microbiome composition and introduce bias. To investigate this systematically, a total of 54 farmed oysters were collected from Chesapeake Bay between May and September 2019.

View Article and Find Full Text PDF

Lab-on-paper for molecular testing with USB-powered isothermal amplification and fluidic control.

Mikrochim Acta

January 2025

Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.

The global healthcare market increasingly demands affordable molecular diagnostics for field testing. To address this need, we introduce a lab-on-paper (LOP) platform that integrates isothermal amplification with a specially designed paper strip for molecular testing through an automated microfluidics process. The LOP system is engineered for rapid, cost-effective, and highly sensitive detection, using USB-powered thermal management and a wax valve mechanism.

View Article and Find Full Text PDF

With global temperatures on the rise and an expanding seafood trade, infections by Vibrio vulnificus, particularly in warm coastal areas like Hainan, China, are increasingly prevalent. These bacteria are notorious for causing grave infections with a high fatality rate. This study aims to dissect the clinical features, laboratory findings, treatment modalities, and patient outcomes associated with V vulnificus infections in Hainan Province.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!