Hormonal control of metabolism by the hypothalamus-autonomic nervous system-liver axis.

Front Horm Res

Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

Published: December 2014

The hypothalamus has long been appreciated to be fundamental in the control and coordination of homeostatic activity. Historically, this has been viewed in terms of the extensive neuroendocrine control system resulting from processing of hypothalamic signals relayed to the pituitary. Through these actions, endocrine signals are integrated throughout the body, modulating a vast array of physiological processes. Our understanding of the responses to endocrine signals is crucial for the diagnosis and management of many pathological conditions. More recently, the control emanating from the hypothalamus over the autonomic nervous system has been increasingly recognized as a powerful additional modulator of peripheral tissues. However, the neuroendocrine and autonomic control pathways emanating from the hypothalamus are not separate processes. They appear to act as a single integrated regulatory system, far more subtle and complex than when each is viewed in isolation. Consequently, hypothalamic regulation should be viewed as a summation of both neuroendocrine and autonomic influences. The neural regulation is believed to be fine and rapid, whereas the hormonal regulation is more stable and widespread. In this chapter, we will focus on the hypothalamic control of hepatic glucose and lipid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000358312DOI Listing

Publication Analysis

Top Keywords

endocrine signals
8
emanating hypothalamus
8
neuroendocrine autonomic
8
control
5
hormonal control
4
control metabolism
4
metabolism hypothalamus-autonomic
4
hypothalamus-autonomic nervous
4
nervous system-liver
4
system-liver axis
4

Similar Publications

Stress plays a key role in mental, neurological, endocrine, and immune disorders. The zebrafish (Danio rerio) is rapidly gaining popularity as s model organism in stress physiology and neuroscience research. Although the leopard (leo) fish are a common outbred zebrafish strain, their behavioral phenotypes and stress responses remain poorly characterized.

View Article and Find Full Text PDF

Ovarian ischemia is a pathological condition that usually occurs due to ovarian torsion, resulting in the interruption of blood supply to the ovaries and oxygen deficiency. Silymarin (SLM) is a flavonoid complex of plant origin with pharmacological properties such as antioxidant, anti-inflammatory, and antiapoptotic effects. In this study, we investigated the effects of SLM through different pathways in rats subjected to experimental ovarian ischemia/reperfusion (I/R).

View Article and Find Full Text PDF

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!