MicroRNAs (miRNAs) are small RNAs that derive from endogenous precursors harboring foldback structures. Plant miRNA precursors are quite variable in their size and shape. Still, the miRNA processing machinery, consisting of DICER-LIKE1 (DCL1) and accessory proteins recognize structural features on the precursors to cleave them at specific places releasing the mature miRNAs. The identification of miRNA processing intermediates in plants has mostly relied on a modified 5' RACE method, designed to detect the 5' end of uncapped RNAs. However, this method is time consuming and is, therefore, only practical for the analysis of a handful miRNAs. Here, we present a modification of this approach in order to perform genome-wide analysis of miRNA processing intermediates. Briefly, a reverse transcription is performed with a mixture of specific primers designed against all known miRNA precursors. miRNA processing intermediates are then specifically amplified to generate a library and subjected to deep sequencing. This method, called SPARE (Specific Parallel Amplification of 5' RNA Ends) allows the identification of processing intermediates for most of the Arabidopsis miRNAs. The results enable the determination of the DCL1 processing direction and the cleavage sites introduced by miRNA processing machinery in the precursors. The SPARE method can be easily adapted to detect miRNA-processing intermediates in other systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2014.04.001 | DOI Listing |
Adv Mater
January 2025
Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Str. 10, 48149, Münster, Germany.
As a phase change material (PCM), antimony exhibits a set of desirable properties that make it an interesting candidate for photonic memory applications. These include a large optical contrast between crystalline and amorphous solid states over a wide wavelength range. Switching between the states is possible on nanosecond timescales by applying short heating pulses.
View Article and Find Full Text PDFBMJ Open
December 2024
Centre for the Development, Evaluation, Complexity and Implementation in Public Health Improvement, Cardiff University School of Social Sciences, Cardiff, UK
Objectives: To examine the acceptability of implementing, trialling and estimating the cost of the Sexual health and healthy relationships for Further Education (SaFE) intervention.
Design: Two-arm repeated cross-sectional pilot cluster randomised controlled trial (cRCT) of SaFE compared with usual practice, including a process evaluation and an economic assessment.
Setting: Eight further education (FE) settings in South Wales and the West of England, UK.
Methods Mol Biol
January 2025
Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
We present two innovative approaches to investigate the dynamics of membrane fusion and the strength of protein-membrane interactions. The first approach employs pore-spanning membranes (PSMs), which allow for the observation of protein-assisted fusion processes. The second approach utilizes colloidal probe microscopy with membrane-coated probes with reconstituted proteins.
View Article and Find Full Text PDFNat Commun
January 2025
IGF, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
Photoreduction of CO into hydrocarbons is a potential strategy for reducing atmospheric CO and effectively utilizing carbon resources. Cu-deposited TiO photocatalysts stand out in this area due to their good photocatalytic activity and potential methanol selectivity. However, the underlying mechanism and factors controlling product selectivity remain less understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!