Advanced glycation end-products (AGEs) are associated with many pathogenic disorders such as pathogenesis of diabetes or endothelial dysfunction leading to cardiovascular events. Therefore, the identification of new anti-AGE molecules or extracts aims at preventing such pathologies. Many Clusiaceae and Calophyllaceae species are used in traditional medicines to treat arterial hypertension as well as diabetes. Focusing on these plant families, an anti-AGE plant screening allowed us to select Mammea neurophylla for further phytochemical and biological studies. Indeed, both DCM and MeOH stem bark extracts demonstrated in vitro their ability to prevent inflammation in endothelial cells and to reduce vasoconstriction. A bioguided fractionation of these extracts allowed us to point out 4-phenyl- and 4-(1-acetoxypropyl)coumarins and procyanidins as potent inhibitors of AGE formation, potentially preventing endothelial dysfunction. The fractionation steps also led to the isolation of two new compounds, namely neurophyllols A and B from the DCM bark extract together with thirteen known mammea A and E coumarins (mammea A/AA, mammea A/AB, mammea A/BA, mammea A/BB, mammea A/AA cycloD, mammea A/AB cycloD, disparinol B, mammea A/AB cycloE, ochrocarpin A, mammea A/AA cycloF, mammea A/AB cycloF, mammea E/BA, mammea E/BB) as well as δ-tocotrienol, xanthones (1-hydroxy-7-methoxyxanthone, 2-hydroxyxanthone) and triterpenes (friedelin and betulinic acid). During this study, R,S-asperphenamate, previously described from fungal origin was also purified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fitote.2014.04.005DOI Listing

Publication Analysis

Top Keywords

mammea a/ab
16
mammea
14
endothelial dysfunction
12
mammea a/aa
12
advanced glycation
8
mammea neurophylla
8
cyclof mammea
8
glycation inhibition
4
inhibition protection
4
endothelial
4

Similar Publications

A methanol extract of the flowers of Mammea siamensis (Calophyllaceae) was found to inhibit enzymatic activity against aromatase (IC50=16.5 µg/mL). From the extract, two new geranylated coumarins, mammeasins C (1) and D (2), were isolated together with seven coumarins: 8-hydroxy-5-methyl-7-(3,7-dimethyl-octa-2,6-dienyl)-9-(2-methyl-1-oxobutyl)-4,5-dihydropyrano[4,3,2-de]chromen-2-one (9), 8-hydroxy-5-methyl-7-(3,7-dimethyl-octa-2,6-dienyl)-9-(3-methyl-1-oxobutyl)-4,5-dihydropyrano[4,3,2-de]chromen-2-one (10), mammeas A/AA (14), A/AB (15), A/AA cyclo D (18), E/BA (23), and E/BC cyclo D (25).

View Article and Find Full Text PDF

Advanced glycation end-products (AGEs) are associated with many pathogenic disorders such as pathogenesis of diabetes or endothelial dysfunction leading to cardiovascular events. Therefore, the identification of new anti-AGE molecules or extracts aims at preventing such pathologies. Many Clusiaceae and Calophyllaceae species are used in traditional medicines to treat arterial hypertension as well as diabetes.

View Article and Find Full Text PDF

Our ongoing investigations on the stem bark of Mesua beccariana afforded a novel cyclodione coumarin, beccamarin, together with two known xanthones, mesuarianone, mesuasinone, two anthraquinones, 4-methoxy-1,3,5-trihydroxy-anthraquinone and 2,5-dihydroxy-1,3,4-trimethoxyanthraquinone and one coumarin, mammea A/AB. The structures were elucidated by 1D and 2D NMR and MS techniques.

View Article and Find Full Text PDF

Bioassay-guided fractionation of a CH2Cl2-MeOH extract of the bark of Ochrocarpos punctatus resulted in the isolation of seven new coumarins, ochrocarpins A-G (1-7), three new benzophenone derivatives, ochrocarpinones A-C (8-10), and five known coumarins, mammea A/AC cyclo F (11), mammea A/AD cyclo D (12), mammea A/AB cyclo F (13), mammea A/AA cyclo F (14), mammea A/AB cyclo D (15), and 15,16-dihydro-16-hydroperoxyplukenetione (16). The structures of compounds 1-10 were established on the basis of extensive 1D and 2D NMR spectroscopic data interpretation. All compounds exhibited cytotoxicity against the A2780 ovarian cancer cell line.

View Article and Find Full Text PDF

Seven known mammea coumarins, mammea A/AA cyclo D ( 1 ), mammea A/AD cyclo D ( 2 ), mammea A/AB cyclo D ( 3 ), mammea A/AC cyclo F ( 4 ), mam-mea A/AB cyclo F ( 5 ), mammea A/AA cyclo F ( 6 ), mammea B/AC cyclo F ( 7 ), were isolated for the first time from the hexane extract of Mammea siamensis . A detailed analysis of both 1D and 2D NMR spectral data of these compounds was made.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!