The effect of gas double-dynamic on mass distribution in solid-state fermentation.

Enzyme Microb Technol

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.

Published: May 2014

The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2014.02.007DOI Listing

Publication Analysis

Top Keywords

solid-state fermentation
20
gas double-dynamic
16
mass distribution
12
fermentation
9
distribution regularity
8
heat transfer
8
solid-state
5
gas
4
double-dynamic mass
4
distribution
4

Similar Publications

Valorization of agro-industrial waste through solid-state fermentation: Mini review.

Biotechnol Rep (Amst)

March 2025

Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, P.O.Box 2666, United Arab Emirates.

Agriculture and industrial waste are produced in large volumes every year worldwide, causing serious concerns about their disposal. These wastes have high organic content, which microorganisms can easily assimilate into relevant value-added products. Valorization of agro-industrial waste is required for sustainable development.

View Article and Find Full Text PDF

Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps.

View Article and Find Full Text PDF

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull.

Microorganisms

December 2024

Biotechnology and Bioengineering Laboratory, Centro de Investigación en Alimentación y Desarrollo, Delicias 33089, Chihuahua, Mexico.

Pistachio green hull (PGH) represents the non-edible fraction obtained after the seed is harvested and is an important source of phenolic compounds. Solid-state fermentation (SSF) is a viable biotechnological and economical technique for extracting phenolic compounds. This study aimed to evaluate the SSF with GH1 to recover total phenolic compounds (TPC) with antioxidant capacity (AC) from PGH.

View Article and Find Full Text PDF

Pretreatment of Palm Kernel Cake by Enzyme-Bacteria and Its Effects on Growth Performance in Broilers.

Animals (Basel)

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

This study aimed to improve palm kernel cake by reducing anti-nutritional factors with enzymes and enhancing its nutritional value through microbial fermentation. It also examined the effects of these treatments on palm kernel cake in broiler chicken diets. Palm kernel cake was hydrolyzed using xylanase and mannanase under various conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!