Structural characterization of P1'-diversified urea-based inhibitors of glutamate carboxypeptidase II.

Bioorg Med Chem Lett

Institute of Biotechnology, Academy of Sciences of the Czech Republic, v.v.i., Laboratory of Structural Biology, Vídeňská 1083, 14220 Prague 4, Czech Republic. Electronic address:

Published: May 2014

Urea-based inhibitors of human glutamate carboxypeptidase II (GCPII) have advanced into clinical trials for imaging metastatic prostate cancer. In parallel efforts, agents with increased lipophilicity have been designed and evaluated for targeting GCPII residing within the neuraxis. Here we report the structural and computational characterization of six complexes between GCPII and P1'-diversified urea-based inhibitors that have the C-terminal glutamate replaced by more hydrophobic moieties. The X-ray structures are complemented by quantum mechanics calculations that provide a quantitative insight into the GCPII/inhibitor interactions. These data can be used for the rational design of novel glutamate-free GCPII inhibitors with tailored physicochemical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077459PMC
http://dx.doi.org/10.1016/j.bmcl.2014.03.066DOI Listing

Publication Analysis

Top Keywords

urea-based inhibitors
12
p1'-diversified urea-based
8
glutamate carboxypeptidase
8
structural characterization
4
characterization p1'-diversified
4
inhibitors
4
inhibitors glutamate
4
carboxypeptidase urea-based
4
inhibitors human
4
human glutamate
4

Similar Publications

The smoke-derived butenolides, karrikins (KARs), regulate many aspects of plant growth and development. However, KARs and a plant hormone, strigolactones (SLs), have high resemblance in signal perception and transduction, making it hard to delineate KARs response due to the shortage of chemical-genetic tools. Here, we identify a triazole urea KK181N1 as an inhibitor of the KARs receptor KAI2.

View Article and Find Full Text PDF

Prostate-specific membrane antigen as target for vasculature-directed therapeutic strategies in solid tumors.

Crit Rev Oncol Hematol

January 2025

Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Plesmanlaan 125, Amsterdam, the Netherlands.

Prostate-specific membrane antigen (PSMA) is one of the few biomarkers which has been successfully translated to the clinic as theranostic biomarker for patients with prostate cancer. In the context of prostate cancer, PSMA is overexpressed on the cell membrane of tumor cells, making it a viable target for interventions with urea-based small molecule inhibitors or antibodies conjugated to radioactive isotopes. Interestingly, in several non-prostatic cancers, expression of PSMA appears to be associated with the tumor neovasculature.

View Article and Find Full Text PDF

Synthesis, evaluation and mechanistic insights of novel IMPDH inhibitors targeting ESKAPEE bacteria.

Eur J Med Chem

December 2024

School of Chemistry, University College Cork, Cork, Ireland; School of Pharmacy, University College Cork, Cork, Ireland; Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland. Electronic address:

Antimicrobial resistance poses a significant threat to global health, necessitating the development of novel therapeutic agents with unique mechanisms of action. Inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme in guanine nucleotide biosynthesis, is a promising target for the discovery of new antimicrobial agents. High-throughput screening studies have previously identified several urea-based leads as potential inhibitors, although many of these are characterised by reduced chemical stability.

View Article and Find Full Text PDF

The methyl-d-erythritol phosphate (MEP) pathway has emerged as an interesting target in the fight against antimicrobial resistance. The pathway is essential in many human pathogens, including (), but is absent in human cells. In the present study, we report on the discovery of a new chemical class targeting IspD, the third enzyme in the pathway.

View Article and Find Full Text PDF

Discovery of a urea-based hit compound as a novel inhibitor of transforming growth factor-β type 1 receptor: and studies.

Phys Chem Chem Phys

September 2024

Beijing Key Laboratory of Environmental and Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.

Transforming growth factor β type 1 receptor (TGFβR1), a crucial serine-threonine kinase, is central to the TGFβ/Smad signaling pathway, governing cellular processes like growth, differentiation, apoptosis, and immune response. This pathway is closely linked to the epithelial-mesenchymal transition (EMT) process, which plays an important role in the metastasis of hepatocellular carcinoma (HCC). To date, only limited inhibitors targeting TGFβR1 have entered clinical trials, yet they encounter challenges, notably high toxicity, in clinical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!