Role of functionality in two-component signal transduction: a stochastic study.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009, India.

Published: March 2014

We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.89.032713DOI Listing

Publication Analysis

Top Keywords

signal transduction
12
two-component system
12
phosphotransfer mechanism
8
sensor kinase
8
two-component
5
role functionality
4
functionality two-component
4
two-component signal
4
transduction stochastic
4
stochastic study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!