The study of the low temperature phase of spin glass models by means of Monte Carlo simulations is a challenging task, because of the very slow dynamics and the severe finite-size effects they show. By exploiting at the best the capabilities of standard modern CPUs (especially the streaming single instruction, multiple data extensions), we have been able to simulate the four-dimensional Edwards-Anderson model with Gaussian couplings up to sizes L=70 and for times long enough to accurately measure the asymptotic behavior. By quenching systems of different sizes to the critical temperature and to temperatures in the whole low temperature phase, we have been able to identify the regime where finite-size effects are negligible: ξ(t)≲L/7. Our estimates for the dynamical exponent (z≃1/T) and for the replicon exponent (α≃1.0 and T independent), that controls the decay of the spatial correlation in the zero overlap sector, are consistent with the replica symmetry breaking theory, but the latter differs from the theoretically conjectured value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.89.032127 | DOI Listing |
Arq Bras Oftalmol
January 2025
Research Nucleus in Neuroscience and Behavior and Applied Neuroscience, Universidade de São Paulo, São Paulo, SP, Brazil.
Purpose: Amblyopia is a cortical neurological disorder caused by abnormal visual experiences during the critical period for visual development. Recent works have shown that, in addition to the well-known visual alterations, such as changes in visual acuity, several perceptual aspects of vision are affected. This study aims to analyze and compare the effects of different types of amblyopia on visual color processing and determine whether these effects are correlated with visual acuity.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
Persistent homology applied to the activity of grid cells in the Medial Entorhinal Cortex suggests that this activity lies on a toroidal manifold. By analyzing real data and a simple model, we show that neural oscillations play a key role in the appearance of this toroidal topology. To quantitatively monitor how changes in spike trains influence the topology of the data, we first define a robust measure for the degree of toroidality of a dataset.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Faculty of Fine Arts, Design and Architecture Department of Landscape Architecture, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye.
Wetlands provide necessary ecosystem services, such as climate regulation and contribution to biodiversity at global and local scales, and they face spatial changes due to natural and anthropogenic factors. The degradation of the characteristic structure signals potential severe threats to biodiversity. This study aimed to monitor the long-term spatial changes of the Göksu Delta, a critical Ramsar site, using remote sensing techniques.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
We introduce an approach for analyzing the responses of dynamical systems to external perturbations that combines score-based generative modeling with the generalized fluctuation-dissipation theorem. The methodology enables accurate estimation of system responses, including those with non-Gaussian statistics. We numerically validate our approach using time-series data from three different stochastic partial differential equations of increasing complexity: an Ornstein-Uhlenbeck process with spatially correlated noise, a modified stochastic Allen-Cahn equation, and the 2D Navier-Stokes equations.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium.
The phase separation that occurs in two-temperature mixtures, which are driven out of equilibrium at the local scale, has been thoroughly characterized, but much less is known about the depletion interactions that drive it. Using numerical simulations in dimension 2, we show that the depletion interactions extend beyond two particle diameters in dilute systems, as expected at equilibrium, and decay algebraically with an exponent -4. Solving for the N-particle distribution function in the stationary state, perturbatively in the interaction potential, we show that algebraic correlations with an exponent -2d arise from triplets of particles at different temperatures in spatial dimension d.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!