Dynamic kinetic asymmetric [3 + 2] annulation reactions of aminocyclopropanes.

J Am Chem Soc

Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO , BCH 4306, 1015 Lausanne, Switzerland.

Published: April 2014

We report the first example of a dynamic kinetic asymmetric [3 + 2] annulation reaction of aminocyclopropanes with both enol ethers and aldehydes. Using a Cu catalyst and a commercially available bisoxazoline ligand, cyclopentyl- and tetrahydrofurylamines were obtained in 69-99% yield and up to a 98:2 enantiomeric ratio using the same reaction conditions. The method gives access to important enantio-enriched nitrogen building blocks for the synthesis of bioactive compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja5024578DOI Listing

Publication Analysis

Top Keywords

dynamic kinetic
8
kinetic asymmetric
8
asymmetric annulation
8
annulation reactions
4
reactions aminocyclopropanes
4
aminocyclopropanes report
4
report example
4
example dynamic
4
annulation reaction
4
reaction aminocyclopropanes
4

Similar Publications

Dinitrogen Activation: A Novel Approach with P/B Intermolecular FLP.

J Phys Chem A

January 2025

School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.

This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.

View Article and Find Full Text PDF

Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.

View Article and Find Full Text PDF

Yttrium-doped NiMo-MoO heterostructure electrocatalysts for hydrogen production from alkaline seawater.

Nat Commun

January 2025

Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan, PR China.

Active and stable electrocatalysts are essential for hydrogen production from alkaline water electrolysis. However, precisely controlling the interaction between electrocatalysts and reaction intermediates (HO*, H*, and *OH) remains challenging. Here, we demonstrate an yttrium-doped NiMo-MoO heterogenous electrocatalyst that efficiently promotes water dissociation and accelerates the intermediate adsorption/desorption dynamics in alkaline electrolytes.

View Article and Find Full Text PDF

This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.

View Article and Find Full Text PDF

Facile and green fabrication of biodegradable aerogel from chitosan derivatives/modified gelatin as absorbent for oil removal.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China. Electronic address:

Frequent oil spills have caused increasingly severe pollution of marine water bodies. As a result, exploring green and efficient aerogels to tackles oil pollution is in high demand. In this work, a unique strategy for preparing all-biomass aerogel was innovatively proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!