Interfacial free energies often control heterogeneous nucleation of calcium carbonate (CaCO3) on mineral surfaces. Here we report an in situ experimental study of CaCO3 nucleation on mica (muscovite) and quartz, which allows us to obtain the interfacial energies governing heterogeneous nucleation. In situ grazing incidence small-angle X-ray scattering (GISAXS) was used to measure nucleation rates at different supersaturations. The rates were incorporated into classical nucleation theory to calculate the effective interfacial energies (α'). Ex situ Raman spectroscopy identified both calcite and vaterite as CaCO3 polymorphs; however, vaterite is the most probable heterogeneous nuclei mineral phase. The α' was 24 mJ/m(2) for the vaterite-mica system and 32 mJ/m(2) for the vaterite-quartz system. The smaller α' of the CaCO3-mica system led to smaller particles and often higher particle densities on mica. A contributing factor affecting α' in our system was the smaller structural mismatch between CaCO3 and mica compared to that between CaCO3 and quartz. The extent of hydrophilicity and the surface charge could not explain the observed CaCO3 nucleation trend on mica and quartz. The findings of this study provide new thermodynamic parameters for subsurface reactive transport modeling and contribute to our understanding of mechanisms where CaCO3 formation on surfaces is of concern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es405141j | DOI Listing |
Langmuir
January 2025
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
Herein, first, MIL-125 samples were synthesized via a hydrothermal method. Then, Ag species were doping on the surface of MIL-125 samples via the photolysis of silver nitrate. Finally, the Z-scheme MIL-125/Ag/BiOBr composite was synthesized via a directed liquid assembly method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, California 94132, United States.
Water electrolysis is a green method of storing electrical energy in the chemical bonds of high-energy hydrogen gas (H). However, the anodic oxygen evolution reaction (OER) requires a significant kinetic overpotential, limiting the electrolysis rate. Recently, plasmonic gold nanoparticles (Au NPs) have been introduced to improve charge transfer at the interface between the OER electrocatalysts and the electrolyte under light illumination.
View Article and Find Full Text PDFSmall
January 2025
College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China.
Realizing fast charging in high-specific-energy lithium metal batteries (LMBs) remains a significant challenge. Here, a oleophilic garnet suspension electrolyte design is reported, using inorganic solid electrolyte modified by low-surface-energy 1H,1H,2H,2H-perfluorooctyl trichlorosilane (PFOTS), to address the dilemma of fast charging and high specific energy in LMBs. With the oleophilic suspension electrolytes, the ionic conductivity of carbonate electrolyte is increased by ≈20%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!