Liquid crystalline phase behavior of silica nanorods in dimethyl sulfoxide and water.

Langmuir

Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States.

Published: April 2014

We report lyotropic smectic liquid crystalline phase behavior of silica nanorods dispersed in binary mixtures of dimethyl sulfoxide (DMSO) and water (H2O). The phase behavior is affected by nanorod size polydispersity and DMSO concentration in the binary solvent. The isotropic to biphasic transition is strongly affected by the relative amount of DMSO in the solvent, but the solvent has little effect on the biphasic to liquid crystal transition above 40/60 DMSO/H2O by volume. At less than 40% DMSO, increasing silica nanorod concentration initially results in the formation of liquid crystalline domains, but further increasing silica concentration results in crystal solvate formation. The morphology of the liquid crystalline phase is strongly affected by the size polydispersity, with lower polydispersity leading to a more uniform structure. As in other lyotropic nanocylinder systems, the microstructure of continuous solid films produced from the dispersions was affected by both the initial microstructure and the applied shear.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la405013hDOI Listing

Publication Analysis

Top Keywords

liquid crystalline
16
crystalline phase
12
phase behavior
12
behavior silica
8
silica nanorods
8
dimethyl sulfoxide
8
size polydispersity
8
increasing silica
8
liquid
5
phase
4

Similar Publications

Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.

Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.

View Article and Find Full Text PDF

Turmeric (Curcuma longa L.) has gained significant attention for its medicinal properties, yet its therapeutic applications are often limited by low aqueous solubility and susceptibility to environmental factors. This study investigates the formulation of a curcumin-rich turmeric extract-β-cyclodextrin inclusion complex (TUE-β-CD) to enhance its bioactivity and stability.

View Article and Find Full Text PDF

We present an application of our new theoretical formulation of quantum dynamics, moment propagation theory (MPT) (Boyer et al., J. Chem.

View Article and Find Full Text PDF

A novel method for synthesizing nanomaterials involves microbial or phytochemical nano-factories, which offer an eco-friendly, cost-effective, and reliable approach to producing clean and reproducible products. In this study, magnesium oxide nanoparticles (MgO NPs) were synthesized using Avicennia marina, a marine plant, as both a nucleation and stabilizing agent. The MgO NPs were characterized for crystallinity, cut-off wavelength, morphology, thermal stability, and surface properties using XRD, EDX, BET, UV-Visible spectroscopy, DLS, zeta potential analysis, SEM, TEM, TGA/DTA, and PL spectroscopy.

View Article and Find Full Text PDF

Propagation of Orientation Across Lengthscales in Sheared Self-Assembling Hierarchical Suspensions via Rheo-PLI-SAXS.

Adv Sci (Weinh)

December 2024

Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.

Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!