Nanostructured substrates have been recognized to initiate transcriptional programs promoting cell proliferation. Specifically -catenin has been identified as transcriptional regulator, activated by adhesion to nanostructures. We set out to identify processes responsible for nanostructure-induced endothelial -catenin signaling. Transmission electron microscopy (TEM) of cell contacts to differently sized polyethylene terephthalate (PET) surface structures (ripples with 250 to 300 nm and walls with 1.5 μm periodicity) revealed different patterns of cell-substrate interactions. Cell adhesion to ripples occurred exclusively on ripple peaks, while cells were attached to walls continuously. The Src kinase inhibitor PP2 was active only in cells grown on ripples, while the Abl inhibitors dasatinib and imatinib suppressed -catenin translocation on both structures. Moreover, Gd sensitive Ca entry was observed in response to mechanical stimulation or Ca store depletion exclusively in cells grown on ripples. Both PP2 and Gd suppressed -catenin nuclear translocation along with proliferation in cells grown on ripples but not on walls. Our results suggest that adhesion of endothelial cells to ripple structured PET induces highly specific, interface topology-dependent changes in cellular signalling, characterized by promotion of Gd -sensitive Ca entry and Src/Abl activation. We propose that these signaling events are crucially involved in nanostructure-induced promotion of cell proliferation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982206 | PMC |
http://dx.doi.org/10.1155/2013/251063 | DOI Listing |
Nat Commun
January 2025
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
Aerobic and anaerobic organisms and their functions are spatially or temporally decoupled at scales ranging from individual cells to ecosystems and from minutes to hours. This is due to competition for energy substrates and/or biochemical incompatibility with oxygen (O). Here we report a chemolithotrophic Aquificales bacterium, Hydrogenobacter, isolated from a circumneutral hot spring in Yellowstone National Park (YNP) capable of simultaneous aerobic and anaerobic respiration when provided with hydrogen (H), elemental sulfur (S), and O.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Background: Exosomes, which carry bioactive RNAs, proteins, lipids, and metabolites, have emerged as novel diagnostic markers and therapeutic agents for heart failure (HF). This study aims to elucidate the trends, key contributors, and research hotspots of exosomes in HF.
Methods: We collected publications related to exosomes in HF from the Web of Science Core Collection.
Small
January 2025
School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
Perovskite quantum dots (QDs) are promising optoelectronic materials. The large surface area provides an opportunity for ligand engineering to protect the QDs, while also impeding the charge transport in the QD array. Here, the solvent-mediated growth of a hierarchical zero-dimensional (HZD) architecture between CsPbI QDs is reported.
View Article and Find Full Text PDFEur J Oral Sci
January 2025
Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju-si, South Korea.
The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.
View Article and Find Full Text PDFPharmaceutics
January 2025
Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!