There is an increasing interest in developing novel imaging strategies for sensing proteolytic activities in intact organisms in vivo. Overhauser-enhanced MRI (OMRI) offers the possibility to reveal the proteolysis of nitroxide-labeled macromolecules thanks to a sharp decrease of the rotational correlation time of the nitroxide moiety upon cleavage. In this paper, this concept is illustrated in vivo at 0.2 T using nitroxide-labeled elastin orally administered in mice. In vitro, this elastin derivative was OMRI-visible and gave rise to high Overhauser enhancements (19-fold at 18 mm nitroxide) upon proteolysis by pancreatic porcine elastase. In vivo three-dimensional OMRI detection of proteolysis was carried out. A keyhole fully balanced steady-state free precession sequence was used, which allowed 3D OMRI acquisition within 20 s at 0.125 mm(3) resolution. About 30 min after mouse gavage, proteolysis was detected in the duodenum, where Overhauser enhancements were 7.2 ± 2.4 (n = 7) and was not observed in the stomach. Conversely, orally administered free nitroxides or pre-digested nitroxide-labeled elastin were detected in the mouse's stomach by OMRI. Combined with specific molecular probes, this Overhauser-enhanced MRI technique can be used to evaluate unregulated proteolytic activities in various models of experimental diseases and for drug testing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmmi.1586DOI Listing

Publication Analysis

Top Keywords

overhauser-enhanced mri
12
vivo overhauser-enhanced
8
proteolytic activities
8
nitroxide-labeled elastin
8
orally administered
8
overhauser enhancements
8
vivo
4
mri proteolytic
4
proteolytic activity
4
activity increasing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!