Understanding variability of contaminant bioaccumulation within and among fish populations is critical for distinguishing between the chemical and biological mechanisms that contribute to food web biomagnification and quantifying contaminant exposure risks in aquatic ecosystems. The present study examined the relative contributions of chemical hydrophobicity (octanol-water partition coefficient [KOW ]) and habitat use as factors regulating variability in polychlorinated biphenyl (PCB) congener bioaccumulation in 3 lower trophic level cyprinid species across spatial and temporal scales. Bluntnose minnows (Pimephales notatus), spottail shiners (Notropis hudsonius), and emerald shiners (Notropis atherinoides) were sampled at 3 locations in the Detroit River, Ontario, Canada. Variability in PCB concentration was evaluated with respect to several factors, including chemical hydrophobicity, site, season, species, and weight using sum of squares and Levene's test of homogeneity of variance. Individual variability in bioaccumulated congener-specific residues depended on chemical hydrophobicity with mid- and high-range KOW congeners (log KOW  >6.0), demonstrating the highest amount of variance compared with low KOW congeners. Different feeding strategies also contributed to the variance observed for mid-range KOW congeners among species. In the present study, benthic feeding specialists exhibited lower variance in PCB concentrations compared with the 2 generalist species. The results indicate that chemical hydrophobicity and feeding ecology not only contribute to differences in the biomagnification potentials of fish, but also regulate between-individual variation in PCB concentrations both across and within fish species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.2606DOI Listing

Publication Analysis

Top Keywords

chemical hydrophobicity
16
kow congeners
12
detroit river
8
river ontario
8
ontario canada
8
shiners notropis
8
pcb concentrations
8
variability
5
chemical
5
species
5

Similar Publications

Attachment of Hydrogel Patches to Eye Tissue through Gel Transfer using Flexible Foils.

ACS Appl Mater Interfaces

January 2025

Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.

Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.

View Article and Find Full Text PDF

Design Strategy of PepNzymes-SH for an Emerging Catalyst with Serine Hydrolase-Like Functionality.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Serine hydrolases, as a class of green catalysts with hydrolytic and dehydrating activities, hold significant application value in the fields of biosynthesis and organic synthesis. However, practical applications face numerous challenges, including maintaining enzyme stability and managing usage costs. PepNzymes-SH, an emerging green catalytic material with enzyme-like activity, overcomes the operational limitations of natural enzymes and holds great promise as a substitute for hydrolases.

View Article and Find Full Text PDF

Triethylamine-mediated protonation-deprotonation unlocks dual-drug self assembly to suppress breast cancer progression and metastasis.

Proc Natl Acad Sci U S A

February 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.

View Article and Find Full Text PDF

Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM).

View Article and Find Full Text PDF

Theoretical Study on Adsorption of Halogenated Benzenes on Montmorillonites Modified With M(I)/M(II) Cations.

J Comput Chem

January 2025

Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany.

Halogenated benzenes (HBs) are hydrophobic organic chemicals belonging to persistent organic pollutants. Owing to their persistence, they represent a serious problem in environmental contamination, specifically of soils and sediments. One of the most important physical processes determining the fate of HBs in soils is adsorption to main soil components such as soil organic matter and soil minerals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!