We have employed immunocytochemical and axonal transport techniques to study the development of major projections to the dorsal striatum of the North American opossum. The opossum is born in a very immature state, 12-13 days after conception, and climbs into an external pouch where it remains attached to a nipple for several months. Its immaturity at birth and its protracted postnatal development make the opossum a good model for developmental studies. Although tyrosine hydroxylase-like immunoreactive (TH-LI), presumably dopaminergic, neurons were present in the ventral mesencephalon at birth (the presumptive substantia nigra and ventral tegmental area), there was no evidence for TH-LI axons in the striatal anlage. By postnatal day (PD)6, a few immunostained axons were found within the putamen. The subsequent growth of TH-LI axons into the striatum followed general caudal to rostral and ventrolateral to dorsomedial gradients and, at any age, they were most numerous in the areas exhibiting the greatest cytodifferentiation. By estimated (E)PD45, TH-LI axons were present in most, if not all, areas of the striatum. Serotoninergic (5-HT)-LI axons were found lateral to the presumptive striatum at birth but not within it. By PD7, however, a few 5-HT-LI axons could be identified in the putamen. The growth of 5-HT-LI axons into the striatum generally followed the same gradients described for TH-LI axons although at all ages their density was much less. Using the orthograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP), evidence was obtained for the existence of thalamostriatal projections by PD5 and for corticostriatal projections by PD10. Crossed corticostriatal projections were present by EPD23. Our results suggest that the development of major projections to the striatum occurs postnatally in the opossum, rather than prenatally as in placental animals. The timetable for striatal innervation is discussed in light of the developmental sequences established for other motor circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0165-3806(89)90172-7 | DOI Listing |
Am J Physiol Heart Circ Physiol
May 2006
Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557-0271, USA.
Using high-performance liquid chromatography techniques with fluorescence and electrochemical detection, we found that beta-nicotinamide adenine dinucleotide (beta-NAD) is released in response to electrical field stimulation (4-16 Hz, 0.3 ms, 15 V, 120 s) along with ATP and norepinephrine (NE) in the canine isolated mesenteric arteries. The release of beta-NAD increases with number of pulses/stimulation frequencies.
View Article and Find Full Text PDFPain
February 1999
Department of Anesthesiology, New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA.
Recent animal models of experimental nerve injury have proven useful in evaluating potential sympathetic involvement in neuropathic pain syndromes. We have employed a widely adopted unilateral L5/L6 spinal nerve ligation model to compare the development of mechanical allodynia with neurochemical changes both at the site of peripheral nerve injury and in the dorsal root ganglia (DRG). We have focused on the expression of neuropeptide Y (NPY), a well-studied regulatory peptide and phenotypic marker of sympathetic neurons, and functionally related Y-receptor binding sites following nerve injury.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
February 1998
Department of Ophthalmology, University of Pennsylvania, Philadelphia 19104-6075, USA.
Purpose: To characterize neuropeptide distribution in the ciliary ganglion of rhesus monkeys (Macaca mulatta).
Methods: Cryostat tissue sections of fixed rhesus monkey ciliary, pterygopalatine, superior cervical, and trigeminal ganglia were incubated with antisera to neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), tyrosine hydroxylase (TH), and dopamine-beta-hydroxylase (DBH). Antibody binding was visualized by indirect immunofluorescence.
Neurobiol Aging
April 1997
Department of Medicine, Montreal General Hospital and Research Institute, McGill University, Quebec, Canada.
Ribonuclease protection measurements revealed decreases of 26% in p75 neurotrophin receptor mRNA and 30% in trkA mRNA in superior cervical ganglia (SCG) of aged Long-Evans rats. These declines were not related to the presence of a spatial memory impairment, whose presence is known to strongly predict increased hypothalamic-pituitary-adrenal axis activity in these aged animals. A similar decrease with age was observed in p75, but not cyclophilin mRNA levels in SCG from F-344 inbred rats.
View Article and Find Full Text PDFBrain Res
May 1995
Department of Anatomy and Cell Biology, Göteborg University, Sweden.
The distribution of GAP-43 in superior cervical ganglion (SCG) and iris were studied in normal animals and following decentralization using immunofluorescence and confocal laser scanning microscopy (CLSM). GAP-43-like immunoreactivity (LI) was compared with p38 (synaptophysin)-LI, and tyrosin hydroxylase (TH)-LI. In the control SCG, GAP-43-LI and p38-LI were mainly localized in nerve terminals around the principal neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!