The 30-amino acid peptide Y-P30, generated from the N-terminus of the human dermcidin precursor protein, has been found to promote neuronal survival, cell migration and neurite outgrowth by enhancing the interaction of pleiotrophin and syndecan-3. We now show that Y-P30 activates Src kinase and extracellular signal-regulated kinase (ERK). Y-P30 promotes axonal growth of mouse embryonic stem cell-derived neurons, embryonic mouse spinal cord motoneurons, perinatal rat retinal neurons, and rat cortical neurons. Y-P30-mediated axon growth was dependent on heparan sulfate chains. Y-P30 decreased the proportion of collapsing/degenerating growth cones of cortical axons in an Src and ERK-dependent manner. Y-P30 increased for 90 min in axonal growth cones the level of Tyr418-phosphorylated Src kinase and the amount of F-actin, and transiently the level of Tyr-phosphorylated ERK. Levels of total Src kinase, actin, GAP-43, cortactin and the glutamate receptor subunit GluN2B were not altered. When exposed to semaphorin-3a, Y-P30 protected a significant fraction of growth cones of cortical neurons from collapse. These results suggest that Y-P30 promotes axonal growth via Src- and ERK-dependent mechanisms which stabilize growth cones and confer resistance to collapsing factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-014-0764-2 | DOI Listing |
Netw Neurosci
December 2024
Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107.
Development of neuronal connections is spatially and temporally controlled by extracellular cues which often activate their cognate cell surface receptors and elicit localized cellular responses. Here, we demonstrate the use of an optogenetic tool to activate receptor signaling locally to induce actin-mediated growth cone remodeling in neurons. Based on the light-induced interaction of light between Cryptochrome 2 (CRY2) and CIB1, we generated a bicistronic vector to co-expresses CRY2 fused to the intracellular domain of a guidance receptor and a membrane-anchored CIB1.
View Article and Find Full Text PDFPLoS Genet
December 2024
Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America.
Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches.
View Article and Find Full Text PDFJ Physiol Investig
December 2024
Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
Advillin is an actin-binding protein involved in regulating the organization of actin filaments and the dynamics of axonal growth cones. In mice, advillin is exclusively expressed in somatosensory neurons, ubiquitously expressed in all neuron subtypes during neonatal ages and particularly enriched in isolectin B4-positive (IB4+) non-peptidergic neurons in adulthood. We previously showed that advillin plays a key role in axon regeneration of somatosensory neurons during peripheral neuropathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!