A glycosyl hydrolase family 10 endoxylanase from Bacillus sp. HJ14 was grouped in a separated cluster with another six Bacillus endoxylanases which have not been characterized. These Bacillus endoxylanases showed less than 52% amino acid sequence identity with other endoxylanases and far distance with endoxylanases from most microorganisms. Signal peptide was not detected in the endoxylanase. The endoxylanase was expressed in Escherichia coli BL21 (DE3), and the purified recombinant enzyme (rXynAHJ14) was characterized. rXynAHJ14 was apparent optimal at 62.5 °C and pH 6.5 and retained more than 55% of the maximum activity when assayed at 40-75 °C, 23% at 20 °C, 16% at 85 °C, and even 8% at 0 °C. Half-lives of the enzyme were more than 60 min, approximately 25 and 4 min at 70, 75, and 80 °C, respectively. The enzyme exhibited more than 62% xylanase activity and stability at the concentration of 3-30% (w/v) NaCl. No xylanase activity was lost after incubation of the purified rXynAHJ14 with trypsin and proteinase K at 37 °C for 60 min. Different components of oligosaccharides were detected in the time-course hydrolysis of beechwood xylan by the enzyme. During the simulated intestinal digestion phase in vitro, 11.5-19.0, 15.3-19.0, 21.9-27.7, and 28.2-31.2 μmol/mL reducing sugar were released by the purified rXynAHJ14 from soybean meal, wheat bran, beechwood xylan, and rapeseed meal, respectively. The endoxylanase might be an alternative for potential applications in the processing of sea food and saline food and in aquaculture as agastric fish feed additive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12223-014-0316-4 | DOI Listing |
Microb Cell Fact
December 2024
Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, C3.108, Amsterdam, 1098 XH, The Netherlands.
Background: Bacillus subtilis is widely used for industrial enzyme production due to its capacity to efficiently secrete proteins. However, secretion efficiency of enzymes varies widely, and optimizing secretion is crucial to make production commercially viable. Previously, we have shown that overexpression of the xylanase XynA lowers expression of Clp protein chaperones, and that inactivation of CtsR, which regulates and represses clp transcription, increases the production of XynA.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biotechnology, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India. Electronic address:
Xylooligosaccharides (XOS) are excellent prebiotic which improve health through selective modulation of beneficial gut microbiome. Its production from agroresidues using microbial xylanase is considered as sustainable and economic approach. In this study a xylanase producing bacterium isolated from decaying wood soil was phylogenetically identified and designated as Bacillus stercoris DWS1.
View Article and Find Full Text PDFMicroorganisms
November 2024
Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia.
The phylum is one of the main groups of soil prokaryotes, which remains poorly represented by cultivated organisms. The major recognized role of in soils is the degradation of plant-derived organic matter. These bacteria are particularly abundant in peatlands, where xylan-type hemicelluloses represent one of the most actively decomposed peat constituents.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China. Electronic address:
Xylanases are a class of glycoside hydrolases commonly used in the food, papermaking, and textile industries. However, most xylanases are rapidly inactivated under harsh industrial conditions. Here, a unique and robust GH11 xylanase, AncXyn18, was designed using an ancestral sequence reconstruction strategy, sequence analysis, structure prediction, and experimental verification.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China. Electronic address:
Transition state (TS) stabilization by enzymes greatly accelerates catalytic reactions. For some enzymes, the TS complex has entropy higher than enzyme substrate (ES) complex. But the origin of favorable entropy remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!