Inter-alpha inhibitor proteins (IAIPs) found in relatively high concentrations in human plasma are important in inflammation. IAIPs attenuate brain damage in young and adult subjects, decrease during sepsis and necrotizing enterocolitis in premature infants, and attenuate sepsis-related inflammation in newborn rats. Although a few studies have reported adult organ-specific IAIP expression, information is not available on age-dependent IAIP expression. Given evidence suggesting IAIPs attenuate brain damage in young and adult subjects, and inflammation in newborns, we examined IAIP expression in plasma, cerebral cortex (CC), choroid plexus (CP), cerebral spinal fluid (CSF), and somatic organs in fetal, newborn, and adult sheep to determine the endogenous expression patterns of these proteins during development. IAIPs (enzyme-linked immunosorbent assay) were higher in newborn and adult than fetal plasma (P < 0.05). Western immunoblot detected 125 kDa PaI (Pre-alpha Inhibitor) and 250 kDa IaI (Inter-alpha Inhibitor) in plasma, CNS, and somatic organs. PaI expression in CC and CP was higher in fetuses than newborns and adults, but IaI expression was higher in adults than fetuses and newborns. Both PaI and IaI were higher in fetal than newborn CSF. IAIPs exhibited organ-specific ontogenic patterns in placenta, liver, heart, and kidney. These results provide evidence for the first time that plasma, brain, placenta, liver, heart, and kidney express IAIPs throughout ovine development and that expression patterns are unique to each organ. Although exact functions of IAIPs in CNS and somatic tissues are not known, their presence in relatively high amounts during development suggests their potential importance in brain and organ development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087996PMC
http://dx.doi.org/10.1177/1535370213519195DOI Listing

Publication Analysis

Top Keywords

iaip expression
12
inter-alpha inhibitor
8
inhibitor proteins
8
iaips attenuate
8
attenuate brain
8
brain damage
8
damage young
8
young adult
8
adult subjects
8
newborn adult
8

Similar Publications

Changes in Cellular Localization of Inter-Alpha Inhibitor Proteins after Cerebral Ischemia in the Near-Term Ovine Fetus.

Int J Mol Sci

October 2021

Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School, Brown University, Providence, RI 02905, USA.

Inter-alpha Inhibitor Proteins (IAIPs) are key immunomodulatory molecules. Endogenous IAIPs are present in human, rodent, and sheep brains, and are variably localized to the cytoplasm and nuclei at multiple developmental stages. We have previously reported that ischemia-reperfusion (I/R) reduces IAIP concentrations in the fetal sheep brain.

View Article and Find Full Text PDF

Inter-α inhibitor proteins (IAIPs) are a family of endogenous plasma and extracellular matrix molecules. IAIPs suppress proinflammatory cytokines, limit excess complement activation, and bind extracellular histones to form IAIP-histone complexes, leading to neutralization of histone-associated cytotoxicity in models of sepsis. Many of these detrimental processes also play critical roles in the pathophysiology of ischemic stroke.

View Article and Find Full Text PDF

Inter-alpha inhibitor proteins (IAIPs) are naturally occurring immunomodulatory molecules found in most tissues. We have reported ontogenic changes in the expression of IAIPs in brain during development in sheep and abundant expression of IAIPs in fetal and neonatal rodent brain in a variety of cellular types and brain regions. Although a few studies identified bikunin, light chain of IAIPs, in adult human brain, the presence of the complete endogenous IAIP protein complex has not been reported in human brain.

View Article and Find Full Text PDF

Alterations in inter-alpha inhibitor protein expression after hypoxic-ischemic brain injury in neonatal rats.

Int J Dev Neurosci

April 2018

Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA. Electronic address:

Hypoxic-ischemic (HI) brain injury is frequently associated with premature and/or full-term birth-related complications that reflect widespread damage to cerebral cortical structures. Inflammation has been implicated in the long-term evolution and severity of HI brain injury. Inter-Alpha Inhibitor Proteins (IAIPs) are immune modulator proteins that are reduced in systemic neonatal inflammatory states.

View Article and Find Full Text PDF

Hypoxic-ischemic (HI) brain injury is a major cause of neurological abnormalities in the perinatal period. Inflammation contributes to the evolution of HI brain injury. Inter-alpha inhibitor proteins (IAIPs) are a family of proteins that are part of the innate immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!