Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory.

Sci Rep

Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.

Published: April 2014

AI Article Synopsis

Article Abstract

Large-area arrays of vertically aligned ZnO-nanotapers with tailored taper angle and height are electrodeposited on planar Zn-plate via continuously tuning the Zn(NH3)4(NO3)2 concentration in the electrolyte. Experimental measurements reveal that the field-emission performance of the ZnO-nanotaper arrays is enhanced with the sharpness and height of the ZnO-nanotapers. Theoretically, the ZnO-nanotaper is simplified to a "charge disc" model, based on which the characteristic macroscopic field enhancement factor (γC) is quantified. The theoretically calculated γC values are in good agreement with the experimental ones measured from arrays of ZnO-nanotapers with a series of geometrical parameters. The ZnO-nanotaper arrays have promising potentials in field-emission. The electrochemical synthetic strategy we developed may be extended to nanotaper arrays of other materials that are amenable to electrodeposition, and the "charge disc" model can be used for quasi-one-dimensional field emitters of other materials with nano-sized diameters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985081PMC
http://dx.doi.org/10.1038/srep04676DOI Listing

Publication Analysis

Top Keywords

large-area arrays
8
arrays vertically
8
vertically aligned
8
aligned zno-nanotapers
8
zno-nanotaper arrays
8
"charge disc"
8
disc" model
8
arrays
6
enhanced cold
4
cold field
4

Similar Publications

Pressure and temperature sensing simultaneously and independently is crucial for creating electronic skin that replicates complex sensory functions of human skin. Thin-film transistor (TFT) arrays with sensors have enabled cross-talk-free spatial sensing. However, the thermal dependence of charge transport in semiconductors has resulted in interference between thermal and pressure stimuli.

View Article and Find Full Text PDF

High-Specific Power Flexible Photovoltaics from Large-Area MoS for Space Applications.

ACS Appl Energy Mater

January 2025

Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118-5636, United States.

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS and WSe are excellent candidates for photovoltaic (PV) applications. Here, we present the modeling, fabrication, and characterization of large-area CVD-grown MoS-based flexible PV on an off-the-shelf, 3 μm-thick flexible colorless polyimide with polyimide encapsulation designed for space structures. The devices are characterized under 1 sun AM0 illumination and show a of 0.

View Article and Find Full Text PDF

Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation.

Sci Adv

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.

Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.

View Article and Find Full Text PDF

Self-Poled Bismuth Ferrite Thin Film Micromachined for Piezoelectric Ultrasound Transducers.

Adv Mater

December 2024

Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, North Wollongong, NSW, 2500, Australia.

Piezoelectric micromachined ultrasound transducers (pMUTs), especially those using lead-free materials, are crucial next-generation microdevices for precise actuation and sensing, driving advancements in medical, industrial, and environmental applications. Bismuth ferrite (BiFeO) is emerging as a promising lead-free piezoelectric material to replace Pb(Zr,Ti)O in pMUTs. Despite its potential, the integration of BiFeO thin films into pMUTs has been hindered by poling issues.

View Article and Find Full Text PDF

Au Ordered Array Substrate for Rapid Detection and Precise Identification of Etomidate in E-Liquid Through Surface-Enhanced Raman Spectroscopy.

Nanomaterials (Basel)

December 2024

Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

Etomidate (ET), a medical anesthetic, is increasingly being incorporated into e-liquids for consumption and abuse as a new psychoactive substance (NPS), leading to significant social issues. In this work, large-area Au micro- and nano-structured ordered arrays were engineered as surface-enhanced Raman spectroscopy (SERS) substrates for fast detection and precise identification of ET and its metabolites. This ordered array, characterized by abundant electromagnetic enhancement hotspots and structural uniformity, imparts unique properties to the SERS substrate, including ultra-sensitivity, spectral signal reproducibility, and precise quantitative capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!