The rate constants for the epoxidation of cis-2-heptene with [2-percarboxyethyl]-functionalized silica (1a) and meta-chloroperbenzoic acid (mCPBA) (1b) in different solvents have been determined at temperatures in the -10 to 40 °C range. The heterogeneous epoxidation exhibits a dependence of the reaction rate on solvent polarity opposite to its homogeneous counterpart and anomalous activation parameters in n-hexane, which are interpreted in terms of the surface-promoted solvent structure at the solid-liquid interface. The results show that highly polar solvents can strongly inhibit heterogeneous reactions performed with silica-supported reagents or catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4ob00253a | DOI Listing |
Org Biomol Chem
May 2014
Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicente Andrés Estellés s.n., 46100-Burjassot, Valencia, Spain.
The rate constants for the epoxidation of cis-2-heptene with [2-percarboxyethyl]-functionalized silica (1a) and meta-chloroperbenzoic acid (mCPBA) (1b) in different solvents have been determined at temperatures in the -10 to 40 °C range. The heterogeneous epoxidation exhibits a dependence of the reaction rate on solvent polarity opposite to its homogeneous counterpart and anomalous activation parameters in n-hexane, which are interpreted in terms of the surface-promoted solvent structure at the solid-liquid interface. The results show that highly polar solvents can strongly inhibit heterogeneous reactions performed with silica-supported reagents or catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!