Synthesis and derivatization of highly-functionalized λ⁵-phospholes.

Chem Commun (Camb)

Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain.

Published: May 2014

A variety of λ(5)-phosphole derivatives bearing up to three distinct peripheral functionalities have been prepared by regiospecific [3+2] cycloaddition reactions of the diphosphinoketenimine (PPh2)2C=C=NtBu (1) with electron-poor alkenes. Selective derivatization of the exocyclic functional groups, including formation of dimetallic complexes with a phosphole core, was subsequently accomplished.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc02089hDOI Listing

Publication Analysis

Top Keywords

synthesis derivatization
4
derivatization highly-functionalized
4
highly-functionalized λ⁵-phospholes
4
λ⁵-phospholes variety
4
variety λ5-phosphole
4
λ5-phosphole derivatives
4
derivatives bearing
4
bearing three
4
three distinct
4
distinct peripheral
4

Similar Publications

In vitro metabolism of seven arolyl-derived fentanyl-type new psychoactive substances.

Arch Toxicol

January 2025

School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.

Over the past decade, fentanyl-type new psychoactive substances (F-NPS) have emerged as the most representative synthetic opioids in third-generation drugs. These substances are characterized by their "low" fatal dose and parent drug levels in biological matrices, "fast" rates of derivatization and metabolism, and "many" derivatization sites and analogs. The low levels of parent fentanyl NPS in biological matrices complicate their detection, necessitating the use of characteristic metabolites as biomarkers for forensic analysis.

View Article and Find Full Text PDF

Enalomics: A Mass Spectrometry-Based Approach for Profiling, Identifying, and Semiquantifying Enals in Biological Samples.

Anal Chem

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.

Human cells generate a bulk of aldehydes during lipid peroxidation (LPO), influencing critical cellular processes, such as oxidative stress, protein modification, and DNA damage. Enals, highly reactive α,β-unsaturated aldehydic metabolites, are implicated in various human pathologies, especially neurodegenerative disorders, cancer, and cardiovascular diseases. Despite their importance, endogenous enals remain poorly characterized, primarily due to their instability and low abundance.

View Article and Find Full Text PDF

In this work, we present the synthesis and application of fluorescent rhodamine B hydrazide for the derivatization of simple oligosaccharides and complex glycans using a hydrazone formation chemistry approach. The labeling conditions and the experimental setup of CE/LIF were optimized by analyzing oligosaccharide standards. The CE/LIF separations were performed in polybrene-coated capillaries eliminating the need for the purification step after derivatization.

View Article and Find Full Text PDF

RAFT Dispersion Polymerization of 2-Hydroxyethyl Methacrylate in Non-polar Media.

Macromolecules

December 2024

Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.

We report the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in -dodecane using a poly(lauryl methacrylate) (PLMA) precursor at 90 °C. This formulation is an example of polymerization-induced self-assembly (PISA), which leads to the formation of a colloidal dispersion of spherical PLMA-PHEMA nanoparticles at 10-20% w/w solids. PISA syntheses involving polar monomers in non-polar media have been previously reported but this particular system offers some unexpected and interesting challenges in terms of both synthesis and characterization.

View Article and Find Full Text PDF

In this study, we extended a previously developed one-pot double derivatization reaction to establish the first routine isotope-coded multiplex derivatization for vitamin D and its metabolites for application in clinical environments, using commercial reagents, without the need for specialized reagents and advanced synthesis requirements. The original derivatization process consisted of using both a Cookson-type reagent and derivatization of hydroxyl groups. Initially, the analytes are derivatized by a Diels-Alder reaction using 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), followed by acetylation using acetic anhydride, catalyzed by 4-dimethylaminopyridine at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!