In the present work the effects of exogenous 24-epibrassinolide (EBR) on functional and structural characteristics of the thylakoid membranes under non-stress conditions were evaluated 48 h after spraying of pea plants with different concentrations of EBR (0.01, 0.1 and 1.0 mg.L(-1)). The results show that the application of 0.1 mg.L(-1) EBR has the most pronounced effect on the studied characteristics of the photosynthetic membranes. The observed changes in 540 nm light scattering and in the calorimetric transitions suggest alterations in the structural organization of the thylakoid membranes after EBR treatment, which in turn influence the kinetics of oxygen evolution, accelerate the electron transport rate, increase the effective quantum yield of photosystem II and the photochemical quenching. The EBR-induced changes in the photosynthetic membranes are most probably involved in the stress tolerance of plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2014.03.022DOI Listing

Publication Analysis

Top Keywords

photosynthetic membranes
12
effects exogenous
8
exogenous 24-epibrassinolide
8
membranes non-stress
8
non-stress conditions
8
thylakoid membranes
8
membranes
5
24-epibrassinolide photosynthetic
4
conditions work
4
work effects
4

Similar Publications

Background: The imbalance between Egypt's water requirements and supply necessitates the use of unconventional water sources, such as treated sewage water (TSW) and agricultural drainage water (ADW), to combat water scarcity. This study investigated the effects of foliar glycine betaine (GB) on vegetative growth parameters, physiological characteristics, photosynthetic pigments, leaf element contents, anatomical leaf structures, and antioxidant activity. The experiment was conducted in two successive seasons (2021/2022 and 2022/2023) using Kapok seedlings irrigated with ADW and TSW at different mixing ratios with normal irrigation water (NIW) (25%, 50%, 75%, and 100%), combined with foliar spraying of GB at concentrations of 0.

View Article and Find Full Text PDF

The function of SnRK1 in regulating darkness-induced leaf senescence in cucumber.

Plant Physiol Biochem

December 2024

College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China. Electronic address:

SnRK1 (SNF1-related kinase 1), a member of the SNF1 protein kinase superfamily, has been demonstrated to play a role in plant growth and development, as well as in stress responses. In this experiment, the leaf senescence of 'Xintaimici' cucumber was simulated by dark treatment and studied using SnRK1 activator/inhibitor and transient transformation technology. The effects of SnRK1 on cucumber leaf senescence, reactive oxygen species (ROS) metabolism, chloroplast structure, and photosynthetic characteristics were studied.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi mitigate cadmium stress in maize.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:

Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).

View Article and Find Full Text PDF

Effects of leaf scorch on photosynthetic characteristics, fruit yield, and quality of walnuts.

Physiol Mol Biol Plants

December 2024

College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Xinjiang, 830052 China.

The consequences of walnut ( L.) leaf scorch (WLS) were studied using the cultivated varieties, Wen185 ( 'Wen 185') and Xinxin2 ( 'Xinxin2') in the Aksu region, Xinjiang, China. Photosynthetic parameters and indoor chemical analysis were used to determine the variations in photosynthetic characteristics, osmotic regulatory substances, antioxidant enzyme activities, and changes in fruit yield and quality between diseased and healthy leaves.

View Article and Find Full Text PDF

Transgenic Cynodon dactylon overexpressing CdPIF4 alters plant development and cold stress tolerance.

Physiol Plant

January 2025

Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China.

Bermudagrass [Cynodon dactylon (L.) Pers.] is widely used for soil remediation, livestock forage, and as turfgrass for sports fields, parks, and gardens due to its resilience and adaptability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!